6/6/17

Unit 1: Partial Fractions - Lesson 1

Rational Functions and Partial Fractions

LI

- Know the types of Rational Functions (RFs).
- Find Partial Fractions for specific types of RFs.

<u>SC</u>

• Algebra.

A polynomial divided by another polynomial is called a rational function,

$$\frac{p(x)}{q(x)}$$

If deg $p < \deg q$, the above is called a **proper rational function**, whereas if deg $p \ge \deg q$, the above is called an **improper rational function**.

A rational function can be written in terms of a proper rational function.

A polynomial p is **reducible** if it can be factorised into polynomials, none of which are equal to the polynomials 1 and p. e.g. $\times^2 - 4$

A polynomial is irreducible if it is not reducible. e.g. $x^2 + 4$

Theorem (Partial Fraction Decomposition Theorem):

Any rational function $\frac{p}{q}$ can be written as a polynomial plus a sum of proper rational functions each of which is of the form,

$$\frac{g(x)}{r(x)^n} \qquad (n \in \mathbb{N})$$

where r is an irreducible factor of q and deg $g < \deg r$; such proper rational functions are called **partial fractions** of $\frac{p}{q}$.

Types of Partial Fractions Arising from a Cubic Denominator

In the following table, $a \neq 0$, each factor is non-zero and S, $T \in \mathbb{R}$.

Factor	Partial Fraction
ax + b	5
(non-repeated linear)	$\overline{ax + b}$
$(ax + b)^2$	5 T
(repeated linear)	$\frac{ax + b}{ax + b} + \frac{(ax + b)^2}{ax + b}$
$ax^2 + bx + c$	Sx + T
(irreducible quadratic)	$ax^2 + bx + c$

Example 1

Find partial fractions for $\frac{3x+5}{(x+1)(x+2)(x-3)}$.

$$\frac{3 \times + 5}{(x + 1)(x + 2)(x - 3)} = \frac{A}{x + 1} + \frac{B}{x + 2} + \frac{C}{x - 3}$$

$$3 \times + 5 = A (x + 2)(x - 3) + B (x + 1)(x - 3) + C (x + 1)(x + 2)$$

$$x = -1$$
:

$$3(-1) + 5 = A(-1 + 2)(-1 - 3)$$

$$\Rightarrow \qquad \qquad 2 = A(1)(-4)$$

$$\Rightarrow \qquad \qquad \underline{A = -1/2}$$

$$x = -2$$
:

$$3(-2) + 5 = B(-2 + 1)(-2 - 3)$$

$$\Rightarrow -1 = B(-1)(-5)$$

$$\Rightarrow$$
 B = -1/5

$$x = 3$$
:

$$3(3) + 5 = C(3 + 1)(3 + 2)$$

$$\Rightarrow 14 = C(4)(5)$$

$$\Rightarrow \qquad \qquad C = 7/10$$

$$\therefore \frac{3 \times + 5}{(x + 1)(x + 2)(x - 3)} = \frac{(-1/2)}{x + 1} + \frac{(-1/5)}{x + 2} + \frac{7/10}{x - 3}$$

$$= \frac{-1}{2(x+1)} - \frac{1}{5(x+2)} + \frac{7}{10(x-3)}$$

Example 2

Express $\frac{x^2 + 6x - 4}{(x + 2)^2(x - 4)}$ in partial fractions.

$$\frac{x^2 + 6x - 4}{(x + 2)^2 (x - 4)} = \frac{A}{x + 2} + \frac{B}{(x + 2)^2} + \frac{C}{x - 4}$$

$$x^{2} + 6x - 4 = A(x + 2)(x - 4) + B(x - 4) + C(x + 2)^{2}$$

x = 4:

$$4^{2} + 6(4) - 4 = C(4 + 2)^{2}$$

$$36 = C(36)$$

$$C = 1$$

x = -2:

$$(-2)^{2} + 6(-2) - 4 = B(-2 - 4)$$

$$\Rightarrow -12 = B(-6)$$

$$\Rightarrow B = 2$$

Coefficients of x^2 :

$$1 = A + C$$

$$\Rightarrow A = 0$$

$$\therefore \frac{x^2 + 6x - 4}{(x + 2)^2 (x - 4)} = \frac{2}{(x + 2)^2} + \frac{1}{x - 4}$$

Example 3

Find partial fractions for $\frac{x^2-4}{(3x+2)(x^2+1)}$.

$$\frac{x^2-4}{(3x+2)(x^2+1)} = \frac{A}{3x+2} + \frac{Bx+C}{x^2+1}$$

$$x^2 - 4 = A(x^2 + 1) + (Bx + C)(3x + 2)$$

x = -2/3:

$$(-2/3)^{2} - 4 = A ((-2/3)^{2} + 1)$$

$$\Rightarrow 4/9 - 4 = A (4/9 + 1)$$

$$\Rightarrow -32/9 = A (13/9)$$

$$\Rightarrow -32/9 = A (13/9)$$

$$\Rightarrow A = -32/13$$

$$x^{2} - 4 = A(x^{2} + 1) + (Bx + C)(3x + 2)$$

 $x^{2} - 4 = Ax^{2} + A + 3Bx^{2} + 3Cx + 2Bx + 2C$
 $x^{2} - 4 = (A + 3B)x^{2} + (2B + 3C)x + (A + 2C)$

Coefficients of x^2 :

Constant Terms:

$$A + 3B = 1$$
 $A + 2C = -4$
 $\Rightarrow 3B = 1 + 32/13 \Rightarrow 2C = -4 + 32/13$
 $\Rightarrow 3B = 45/13 \Rightarrow 2C = -20/13$
 $\Rightarrow B = 15/13 \Rightarrow C = -10/13$

$$\frac{x^2 - 4}{(3x + 2)(x^2 + 1)} = \frac{(-32/13)}{3x + 2} + \frac{(15/13)x + (-10/13)}{x^2 + 1}$$

$$= \frac{-32}{13(3x + 2)} + \frac{15x - 10}{13(x^2 + 1)}$$

AH Maths - MiA (2nd Edn.)

pg. 25-6 Ex. 2.4
 Q 16 - 22, 24, 25, 27 - 30, 32, 34 - 36, 39.

Resolve each proper rational function into its partial fractions.

• 16
$$\frac{x}{(1-x)(2+x)}$$

16
$$\frac{x}{(1-x)(2+x)}$$
 17 $\frac{2x-1}{(2x+1)(x-3)}$ **18** $\frac{3x}{(x-2)(x+1)}$

18
$$\frac{3x}{(x-2)(x+1)}$$

■ 19
$$\frac{2}{(x-1)^2(x+1)}$$
 ■ 20 $\frac{3x^2-4}{x(x^2+1)}$ ■ 21 $\frac{3}{x(x-2)^2}$ ■ 22 $\frac{1}{x(x^2+4)}$ ■ 23 $\frac{4x-3}{x^3(x+1)}$ ■ 24 $\frac{5x-3}{(x+2)(x-3)^2}$ ■ 25 $\frac{3x^2+2x}{(x+2)(x^2+3)}$ ■ 26 $\frac{3}{1-x^3}$ ■ 27 $\frac{x^2+1}{x(x^2-1)}$

20
$$\frac{3x^2-4}{x(x^2+1)}$$

• 21
$$\frac{3}{x(x-2)^2}$$

22
$$\frac{1}{x(x^2+4)}$$

23
$$\frac{4x-3}{x^3(x+1)}$$

25
$$\frac{3x^2 + 2x}{(x+2)(x^2+3)}$$

26
$$\frac{3}{1-x^3}$$

27
$$\frac{x^2+1}{x(x^2-1)}$$

28
$$\frac{2x-1}{(x-2)(x+1)(x+3)}$$
 29 $\frac{4x-1}{x^2(x^2-4)}$ **30** $\frac{1}{x^2-2}$

30
$$\frac{1}{x^2-2}$$

31
$$\frac{x^2}{(x-3)^2}$$

32
$$\frac{(x+13)^2}{(x-3)^2(x+5)}$$
 33 $\frac{1-2x}{x^3+1}$

33
$$\frac{1-2x}{x^3+1}$$

34
$$\frac{x}{x^4 - 16}$$

35
$$\frac{2x-1}{(x-3)^2(x+5)}$$
 36 $\frac{3x}{(x+1)(3-x^2)}$

36
$$\frac{3x}{(x+1)(3-x^2)}$$

37
$$\frac{2x^2-5x}{(x^2-1)(x^2-4)}$$

38
$$\frac{1}{x^3(1-2x)}$$

37
$$\frac{2x^2 - 5x}{(x^2 - 1)(x^2 - 4)}$$
 38 $\frac{1}{x^3(1 - 2x)}$ **39** $\frac{2x - 7}{(x^2 + 4)(x - 1)^2}$

40
$$\frac{1}{x(x^2-1)^2}$$

41
$$\frac{1}{x(x^2+4)^2}$$

Answers to AH Maths (MiA), pg. 25-6, Ex. 2.4

16
$$\frac{1}{3(1-x)} - \frac{2}{3(2+x)}$$
 17 $\frac{4}{7(2x+1)} + \frac{5}{7(x-3)}$ 18 $\frac{2}{x-2} + \frac{1}{x+1}$

$$17 \frac{4}{7(2x+1)} + \frac{5}{7(x-3)}$$

18
$$\frac{2}{x-2} + \frac{1}{x+1}$$

$$19 \ \frac{1}{2(x+1)} - \frac{1}{2(x-1)} + \frac{1}{(x-1)^2} \qquad 20 \ \frac{7x}{x^2+1} - \frac{4}{x} \qquad 21 \ \frac{3}{4x} - \frac{3}{4(x-2)} + \frac{3}{2(x-2)^2}$$

20
$$\frac{7x}{x^2+1}-\frac{4}{x}$$

21
$$\frac{3}{4x} - \frac{3}{4(x-2)} + \frac{3}{2(x-2)^2}$$

$$22 \ \frac{1}{4x} - \frac{x}{4(x^2 + 4)}$$

$$22 \ \frac{1}{4x} - \frac{x}{4(x^2 + 4)} \qquad \qquad 24 \ \frac{12}{5(x - 3)^2} + \frac{13}{25(x - 3)} - \frac{13}{25(x + 2)} \qquad \qquad 25 \ \frac{8}{7(x + 2)} + \frac{13x - 12}{7(x^2 + 3)}$$

25
$$\frac{8}{7(x+2)} + \frac{13x-12}{7(x^2+3)}$$

$$27 \frac{1}{x-1} - \frac{1}{x} + \frac{1}{x+1}$$

$$27 \ \frac{1}{x-1} - \frac{1}{x} + \frac{1}{x+1}$$

$$28 \ \frac{1}{5(x-2)} + \frac{1}{2(x+1)} - \frac{7}{10(x+3)}$$

$$29 \ \frac{7}{16(x-2)} + \frac{9}{16(x+2)} - \frac{1}{x} + \frac{1}{4x^2} \qquad 30 \ \frac{\sqrt{2}}{4(x-\sqrt{2})} - \frac{\sqrt{2}}{4(x+\sqrt{2})} \qquad 32 \ \frac{1}{x+5} + \frac{32}{(x-3)^2}$$

$$30 \ \frac{\sqrt{2}}{4(x-\sqrt{2})} - \frac{\sqrt{2}}{4(x+\sqrt{2})}$$

$$32 \frac{1}{x+5} + \frac{32}{(x-3)^2}$$

$$34 \ \frac{1}{16(x-2)} + \frac{1}{16(x+2)} - \frac{x}{8(x^2+4)}$$

$$34 \ \frac{1}{16(x-2)} + \frac{1}{16(x+2)} - \frac{x}{8(x^2+4)} \qquad \qquad 35 \ \frac{11}{64(x-3)} + \frac{5}{8(x-3)^2} - \frac{11}{64(x+5)}$$

$$36 \ \frac{3(\sqrt{3}-1)}{4(\sqrt{3}-x)} + \frac{3(\sqrt{3}+1)}{4(\sqrt{3}+x)} - \frac{3}{2(x+1)}$$

$$39 \ \frac{4}{5(x-1)} - \frac{1}{(x-1)^2} + \frac{1-4x}{5(x^2+4)}$$

$$39 \ \frac{4}{5(x-1)} - \frac{1}{(x-1)^2} + \frac{1-4x}{5(x^2+4)}$$