$2 / 3 / 18$
 Geometry of Complex Numbers - Lesson 1

 Polar Form, Multiplication and Division

 Polar Form, Multiplication and Division}

LI

- Change a complex number between Cartesian and Polar Form.
- Multiply and divide complex numbers in polar form.

SC

- Modulus and Argument.

The set of all complex numbers \mathbb{C} can be geometrically described as the complex plane

An Argand diagram is a plot of one or more complex numbers in the complex plane

A complex number written in Cartesian form as $z=x+y i$ can be written in Polar Form:

$$
z=r(\cos \theta+i \sin \theta)
$$

Modulus of $z: \quad r=|z|=\sqrt{x^{2}+y^{2}}$
An Argument of $z: \operatorname{Arg} z=\theta$
z has infinitely many arguments (keep adding or subtracting multiples of 2π); the principal argument of $z(\arg z)$ is the value of $\operatorname{Arg} z$ that lies in the range $-\pi<\theta \leq \pi$.

> | The Polar form makes multiplication and division |
| :---: |
| of complex numbers very easy |

Given complex numbers z and w in polar form,

$$
z=r(\cos \theta+i \sin \theta) \text { and } w=R(\cos \varphi+i \sin \varphi)
$$

the product and quotient can be formed and simplified (using addition formulae) to give,

$$
\begin{aligned}
& z w=r R(\cos (\theta+\varphi)+i \sin (\theta+\varphi)) \\
& \frac{z}{w}=\frac{r}{R}(\cos (\theta-\varphi)+i \sin (\theta-\varphi))
\end{aligned}
$$

To multiply two complex numbers in polar form,
multiply the moduli and add the arguments:
$|z w|=|z||w| ; \operatorname{Arg}(z w)=\operatorname{Arg} z+\operatorname{Arg} w$

$$
\begin{aligned}
& \text { To divide two complex numbers in polar form, divide } \\
& \text { the moduli and subtract the arguments: } \\
& |z \div w|=|z| \div|w| ; \operatorname{Arg}(z \div w)=\operatorname{Arg} z-\operatorname{Arg} w
\end{aligned}
$$

The resultant argument may need to be brought into the correct range ($-\pi<\theta \leq \pi$) by adding or subtracting multiples of 2π.

$$
\text { Useful shorthand : } \cos \theta+i \sin \theta=\operatorname{cis} \theta
$$

Example 1

Find the modulus and argument (in radians, to 3 s.f.) of $z=-3-5 i$, and hence write z in polar form.

Always plot the complex number first

$$
\begin{aligned}
& r=\sqrt{x^{2}+y^{2}} \\
& \beta=\tan ^{-1}(5 / 3) \\
& \therefore \quad r=\sqrt{(-3)^{2}+(-5)^{2}} \\
& \Rightarrow \quad r=\sqrt{34} \\
& \therefore \quad \alpha=\pi-1.03 \ldots \\
& \Rightarrow \quad \alpha=2.11 \ldots \\
& \therefore \quad \arg z=-2.11
\end{aligned}
$$

$$
-3-5 i=\sqrt{34}(\cos (-2.11)+i \sin (-2.11))
$$

Example 2

Express $z=2$ cis $(2 \pi / 3)$ in Cartesian form.

$$
\begin{aligned}
& & z & =2 \operatorname{cis}(2 \pi / 3) \\
& \therefore & z & =2(\cos (2 \pi / 3)+i \sin (2 \pi / 3)) \\
\Rightarrow & & z & =2((-1 / 2)+i(\sqrt{3} / 2)) \\
& \Rightarrow & z & =-1+i \sqrt{3}
\end{aligned}
$$

Example 3

Simplify 7 cis ($\pi / 6$) $\times 3$ cis ($\pi / 4$) in polar form.
Let $z=7$ cis $(\pi / 6) \times 3$ cis $(\pi / 4)$.

$$
\begin{array}{rlrl}
& & z & =7 \operatorname{cis}(\pi / 6) \times 3 \operatorname{cis}(\pi / 4) \\
\Rightarrow & & z=21 \operatorname{cis}(\pi / 6+\pi / 4) \\
\Rightarrow & z & =21 \operatorname{cis}(5 \pi / 12)
\end{array}
$$

Example 4

Simplify 2 cis ($\pi / 3$) $\div 2$ cis ($\pi / 2$), writing the answer in polar form and then Cartesian form.

Let $w=2$ cis $(\pi / 3) \div 2$ cis $(\pi / 2)$.

$$
\begin{array}{rlrl}
& & w & =2 \operatorname{cis}(\pi / 3) \div 2 \operatorname{cis}(\pi / 2) \\
\Rightarrow & & w=\operatorname{cis}(\pi / 3-\pi / 2) \\
\Rightarrow & & w=\operatorname{cis}(-\pi / 6) \\
& w=\cos (-\pi / 6)+i \sin (-\pi / 6) \\
\Rightarrow & w & =\frac{\sqrt{3}}{2}-\frac{1}{2} i
\end{array}
$$

Example 5

Express z^{4} in polar form (fully simplified) if $z=2$ cis ($\pi / 3$).

$$
\begin{aligned}
& z^{4}=2 \operatorname{cis}(\pi / 3) \times 2 \operatorname{cis}(\pi / 3) \times 2 \operatorname{cis}(\pi / 3) \times 2 \operatorname{cis}(\pi / 3) \\
& \Rightarrow \quad z^{4}=16 \operatorname{cis}(\pi / 3+\pi / 3+\pi / 3+\pi / 3) \\
& \Rightarrow \quad z^{4}=16 \text { cis }(4 \pi / 3)
\end{aligned}
$$

The angle $4 \pi / 3$ is not in the required range $(-\pi<\theta \leq \pi)$-it's bigger than π; we therefore keep on subtracting 2π to get it into the required range.

$$
\begin{gathered}
4 \pi / 3-2 \pi=4 \pi / 3-6 \pi / 3=-2 \pi / 3 \\
z^{4}=16 \operatorname{cis}(-2 \pi / 3)
\end{gathered}
$$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edn.)

- pg. 211 Ex. 12.3 Q 1-4, 6, 7.
- pg. 215-6 Ex. 12.5

$$
\text { Q 1, } 2 a, c, 3 .
$$

Ex. 12.3

$1 z=1 \Rightarrow|z|=1$ and $\arg z=0$
Use the diagram to help you make similar statements about
a $z=i$
b $z=-1$
c $z=-i$

2 a Draw Argand diagrams to illustrate
i $3+4 i$ and $3-4 i$
ii $2+3 i$ and $2-3 i$
iii $5+i$ and $5-i$
b Comment on the Argand diagrams of z and \bar{z}.
3 For each of these complex numbers
i plot the number on an Argand diagram
ii find the modulus and argument to 3 significant figures where appropriate.
a $1+i$
b $2+3 i$
c $3+2 i$
d 6
e $3 i$
f $-4-3 i$ (refer to your sketch)
g $-1+2 i$
h $2-3 i$
i $4-i$

4 For each of these expressions
i simplify by writing them in the form $x+i y$
ii find the modulus and argument.
a $\frac{3+2 i}{1+5 i}$
b $\frac{1}{1+3 i}$
c $(2+4 i)(1-i)$

6 Find the complex number with
a $|z|=2, \arg z=\frac{\pi}{6}$
b $|z|=3, \arg z=\frac{\pi}{4}$
c $|z|=4, \arg z=\frac{\pi}{2}$
$\mathrm{d}|z|=3, \arg z=\frac{\pi}{3}$
e $|z|=2, \arg z=-\frac{\pi}{4}$
f $|z|=1, \arg z=-\frac{\pi}{6}$

7 Express each of these complex numbers in polar form. (Give the argument in degrees.)
a $1+i \sqrt{3}$
b $\sqrt{2}+i \sqrt{2}$
c $-2 \sqrt{3}+2 i$
d -1
e $3 i$
f $-4-i 4 \sqrt{3}$
g $-2 \sqrt{3}+2 i$
h $-\sqrt{2}-i \sqrt{2}$
i $-1-i \sqrt{3}$

Ex. 12.5

1 Simplify these expressions.
a $3\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \times 4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$
b $2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \times 5\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
c $2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right) \times 4\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$
Hint: remember $\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)=\left(\cos \left(-\frac{\pi}{3}\right)+i \sin \left(-\frac{\pi}{3}\right)\right)$
$\mathrm{d}\left(\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}\right) \times 2\left(\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}\right)$
e $5\left(\cos \frac{\pi}{5}-i \sin \frac{\pi}{5}\right) \times 2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
f $4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \div 2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$
g $5\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right) \div 2\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right)$
h $9\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right) \div 3\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$
i $8\left(\cos \frac{\pi}{7}-i \sin \frac{\pi}{7}\right) \div 2\left(\cos \frac{2 \pi}{7}-i \sin \frac{2 \pi}{7}\right)$
2 Convert each complex number to polar form then state the product, $z_{1} z_{2}$, and quotient, $\frac{z_{1}}{z_{2}}$, of each pair. (Work to 3 significant figures.)
a $z_{1}=3+4 i, \quad z_{2}=1+i$
c $z_{1}=1-i, \quad z_{2}=-1-i$
3 Given that $z=r\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)$ calculate
a $z^{2}\left[=r^{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{2}=r^{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\right]$
b $z^{3}\left[=z^{2} z\right]$
c z^{4} [remember to bring the argument back into the range $\left.(-\pi, \pi)\right]$
d z^{5}
e z^{6}
f z^{7}

Answers to AH Maths (MiA), pg. 211, Ex. 12.3

1 a $\quad z=i \Rightarrow|z|=1$ and $\arg z=\frac{\pi}{2}$
b $\quad z=-1 \Rightarrow|z|=1$ and $\arg z=\pi$
c $\quad z=-i \Rightarrow|z|=1$ and $\arg z=-\frac{\pi}{2}$
2 Diagrams showing:
a i $(3,4)$ and $(3,-4) \quad$ ii $(2,3)$ and $(2,-3)$
iii $(5,1)$ and $(5,-1)$
b Reflection in x-axis.
3 a Diagram showing $(1,1) ;|z|=\sqrt{2} ; \arg z=\frac{\pi}{4}$
b Diagram showing $(2,3) ;|z|=\sqrt{13} ; \arg z=0.983(3 \mathrm{sf})$
c Diagram showing $(3,2) ;|z|=\sqrt{13} ; \arg z=0.588(3 \mathrm{sf})$
d Diagram showing $(6,0) ;|z|=6 ; \arg z=0$
e Diagram showing $(0,3) ;|z|=3 ; \arg z=\frac{\pi}{2}$
f Diagram showing $(-4,-3)$; $|z|=5 ; \arg z=-2.50(3 \mathrm{sf})$
g Diagram showing $(-1,2) ;|z|=\sqrt{5} ; \arg z=2.03(3 \mathrm{sf})$
h Diagram showing $(2,-3)$;
$|z|=\sqrt{13} ; \arg z=-0.983(3 \mathrm{sf})$
i Diagram showing ($4,-1$);

$$
|z|=\sqrt{17} ; \arg z=-0.245(3 \mathrm{sf})
$$

4 a i $\frac{1}{2}-\frac{1}{2} i$
ii $\quad|z|=\frac{1}{\sqrt{2}} ; \arg z=-\frac{\pi}{4}$
b i $\frac{1}{10}-\frac{3}{10} i \quad$ ii $\quad|z|=\frac{1}{\sqrt{10}} ; \arg z=-1.25$
c i $\quad 6+2 i \quad$ ii $\quad|z|=2 \sqrt{10} ; \arg z=0.322$
6 a $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)=\sqrt{3}+i$
b $3\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\frac{3}{\sqrt{2}}+i \frac{3}{\sqrt{2}}$
c $\quad 4\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)=4 i$
d $3\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\frac{3}{2}+\frac{3 \sqrt{3}}{2} i$
e $2\left(\cos \frac{\pi}{4}-i \sin \frac{\pi}{4}\right)=\sqrt{2}-i \sqrt{2}$
f $1\left(\cos \frac{\pi}{6}-i \sin \frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}-i \frac{1}{2}$
a $2\left(\cos 60^{\circ}+i \sin 60^{\circ}\right) \quad$ b $2\left(\cos 45^{\circ}+i \sin 45^{\circ}\right)$
c $4\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \mathrm{d}\left(\cos 180^{\circ}+i \sin 180^{\circ}\right)$
e $3\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)$ f $8\left(\cos 120^{\circ}-i \sin 120^{\circ}\right)$
g $4\left(\cos 150^{\circ}-i \sin 150^{\circ}\right)$ h $2\left(\cos 135^{\circ}-i \sin 135^{\circ}\right)$
i $2\left(\cos 120^{\circ}-i \sin 120^{\circ}\right)$

Answers to AH Maths (MiA), pg. 215-6, Ex. 12.5

$$
\left.\begin{array}{rllllll}
1 & \text { a } & 12 \operatorname{cis} \frac{5 \pi}{6} & \text { b } & 10 \operatorname{cis} \frac{5 \pi}{12} & \text { c } & 8 \operatorname{cis} 0 \\
& \text { d } & 2 \operatorname{cis}\left(-\frac{5 \pi}{6}\right) & \text { e } & 10 \operatorname{cis}\left(-\frac{\pi}{30}\right) & \text { f } & 2 \operatorname{cis}\left(\frac{\pi}{6}\right)
\end{array}\right)
$$

