24 / 11 / 16
 Applications of Calculus - Lesson 1
 Maximum and Minimum Values on a Closed Interval

LI

- Determine the maximum and minimum values of a function on a closed interval.

SC

- Stationary points and values.
- Values of the function at the endpoints.

Intervals

An interval is a range of numbers, normally x-values

An open interval is an interval that does not include either endpoint

The white dots mean that the endpoints a and b are not included

The 'open interval from a to b ' is written variously as,

$$
a<x<b \text { or }(a, b)
$$

A closed interval is an interval that
includes both endpoints

The black dots mean that the endpoints a and b are included

The 'closed interval from a to b ' is written variously as,

$$
a \leq x \leq b \text { or }[a, b]
$$

A function $y=f(x)$ on a closed interval $[a, b]$ will have a maximum value and a minimum value (meaning y-values)
(The above statement is not true for an open interval)

- On the closed interval $[a, b]$ the function has a maximum value of $f(b)$ and a minimum value of $f(a)$. Notice here that both the maximum and minimum values occur at the endpoints.
- On the closed interval [d, b] the function has a maximum value of $f(b)$ and a minimum value of $f(p)$. Notice here that the maximum value occurs at an endpoint $(x=b)$ and the minimum value occurs at a stationary point ($x=p$).
- On the open interval (a, b) the function does not have a maximum or minimum value, as the y-values will get arbitrarily close to $f(a)$ and $f(b)$, but never quite reach those values.

Procedure for Finding Maximum and Minimum Values of a Function on a Closed Interval [a, b]

- Find stationary points (x - and y - values). Remember that the y-values at stationary points are called stationary values.
- Find y-values at the endpoints, i.e. find $f(a)$ and $f(b)$.
- From the stationary values and $f(a)$ and $f(b)$, find the biggest and smallest y-values. These will be the required maximum and minimum values.

Example

Find the greatest and least values of the function,

$$
f(x)=\frac{1}{3} x^{3}-2 x^{2}-12 x+5
$$

on the interval $-4 \leq x \leq 11$.

Stationary Points

$$
\begin{aligned}
f(x) & =\frac{1}{3} x^{3}-2 x^{2}-12 x+5 \\
\therefore \quad f^{\prime}(x) & =x^{2}-4 x-12
\end{aligned}
$$

For stationary points (CPs), $f^{\prime}(x)=0$:

$$
\begin{aligned}
& x^{2}-4 x-12=0 \\
& \therefore \quad(x-6)(x+2)=0 \\
& \Rightarrow \quad x=6, x=-2 \\
& x=6: \\
& f(x)=\frac{1}{3} x^{3}-2 x^{2}-12 x+5 \\
& \therefore f(6)=\frac{1}{3}(6)^{3}-2(6)^{2}-12(6)+5 \\
& \Rightarrow \quad f(6)=72-72-72+5 \\
& \Rightarrow \quad f(6)=-67 \\
& x=-2: \\
& f(x)=\frac{1}{3} x^{3}-2 x^{2}-12 x+5 \\
& \therefore f(-2)=\frac{1}{3}(-2)^{3}-2(-2)^{2}-12(-2)+5 \\
& \Rightarrow f(-2)=-\frac{8}{3}-8+24+5 \\
& \Rightarrow \quad f(-2)=\frac{55}{3}
\end{aligned}
$$

x	-3	-2	$\xrightarrow{-3}$	6	\rightarrow
$f^{\prime}(x)$	+	0	-	0	+
Slope		-	\searrow	-	

$$
\begin{array}{rlrl}
& & f^{\prime}(x) & =(x-6)(x+2) \\
& & f^{\prime}(-3) & =(-3-6)(-3+2) \\
\Rightarrow & & f^{\prime}(-3) & =9>0 \\
& & f^{\prime}(x)=(x-6)(x+2) \\
& & f^{\prime}(0)=(0-6)(0+2) \\
\Rightarrow & f^{\prime}(0)=-12<0
\end{array}
$$

$$
f^{\prime}(x)=(x-6)(x+2)
$$

$$
\therefore \quad f^{\prime}(7)=(7-6)(7+2)
$$

$$
\Rightarrow \quad f^{\prime}(7)=9>0
$$

$$
\left(-2, \frac{55}{3}\right) \text { is a local max }
$$

$$
\text { and }(6,-67) \text { is a local min. }
$$

Endpoints

$$
\begin{aligned}
& \quad \frac{x=-4:}{f(x)}=\frac{1}{3} x^{3}-2 x^{2}-12 x+5 \\
& \therefore f(-4)=\frac{1}{3}(-4)^{3}-2(-4)^{2}-12(-4)+5 \\
& \Rightarrow f(-4)=-\frac{64}{3}-32+48+5 \\
& \Rightarrow f(-4)=-\frac{1}{3}
\end{aligned}
$$

$$
x=11:
$$

$$
f(x)=\frac{1}{3} x^{3}-2 x^{2}-12 x+5
$$

$$
\therefore \quad f(11)=\frac{1}{3}(11)^{3}-2(11)^{2}-12(11)+5
$$

$$
\Rightarrow \quad f(11)=\frac{1331}{3}-242-132+5
$$

$$
\Rightarrow \quad f(11)=\frac{224}{3}
$$

Listing the relevant y-values gives,

$$
\begin{aligned}
f(6) & =-67 \\
f(-2) & =\frac{55}{3} \approx 18.33 \\
f(-4) & =-\frac{1}{3} \approx-0.33 \\
f(11) & =\frac{224}{3} \approx 74.67
\end{aligned}
$$

$$
\text { Maximum value of } f=\frac{224}{3}
$$

$$
\text { Minimum value of } f=-67
$$

CfE Higher Maths

pg. 331-2 Ex.16A Q 1,3,5

