24 / 11 / 17
Unit 2 : Proof by Mathematical Induction - Lesson 1

Mathematical Induction 1
 (Finite Sums)

LI

- Use Proof by Mathematical Induction to solve problems with finite summations.

SC

- Algebra.

Statements, Proofs and Notation

A statement (aka proposition) is a sentence for which it can be decided logically that it is true or false

Examples

- All triangles have 3 sides.
- The current US president is Obama.
- If x is in radians, the derivative of $\sin x$ is $\cos x$.
- If x is in degrees, the derivative of $\sin x$ is $\cos x$.

Non-examples

- Maths is fun.
- Dolphins are smart.
- Aliens exist.
- Some pupils in this AH maths class are VERY annoying.

A proof is a way of showing that a statement is true using the rules of logic

Shorthand
$\forall-$ for all/every
$\exists-$ there exists/is
$\nexists-$ there does not exist
$\in \quad-\quad$ belongs to/is a member of
$\Rightarrow \quad-\quad$ implies

Proof by Mathematical Induction

The Principle of Mathematical Induction (PMI) states that, to prove a statement $(P(n))$ about an infinite set of natural numbers :

- Prove the Base Case: $P\left(n_{0}\right)$ is true.
- Prove the Inductive Step :
$P(k)$ true $\Rightarrow P(k+1)$ true.
Then $P(n)$ is true $\forall n \geq n_{0}$.

Usually, $n_{0}=1$; then we would state the conclusion as ' $P(n)$ is true $\forall n \in \mathbb{N}^{\prime}$.

Example 1
Prove by induction that $\sum_{r=1}^{n} r=\frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

$$
P(n): \sum_{r=1}^{n} r=\frac{n(n+1)}{2}
$$

Base Case

Putting $n=1$ into each side of the $P(n)$ statement gives:

$$
\begin{aligned}
& \mathrm{LHS}=\sum_{r=1}^{1} r=1 \\
& \text { RHS }=\frac{1(1+1)}{2}=1
\end{aligned}
$$

As LHS = RHS, P (1) is true

Inductive Step
Assume $P(k)$ is true for some $k \in \mathbb{N}$, i.e. assume that :

$$
\sum_{r=1}^{k} r=\frac{k(k+1)}{2} \longleftarrow \substack{\text { Inductive } \\ \text { Hypothesis }}
$$

We are required to prove (the 'RTP statement') that $P(k+1)$ is true.

$$
\begin{aligned}
& \quad \sum_{r=1} \sum_{r=1}^{k+1} r=\frac{\text { RTP statement }}{k+1} r=\sum_{r=1}^{k} r+(k+1)(k+2) \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r=\frac{k(k+1)}{2}+(k+1) \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r=\frac{k(k+1)+2(k+1)}{2} \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r=\frac{(k+1)(k+2)}{2} \\
& \Rightarrow \text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true }
\end{aligned}
$$

> ' P (1) true' and ' $P(k)$ true $\Rightarrow P(k+1)$ true' together imply, by the $P M I$, that $P(n)$ is true $\forall n \in \mathbb{N}$

Example 2

$$
\begin{array}{r}
\text { Prove that } \sum_{r=1}^{n} r . r!=(n+1)!-1 \forall n \in \mathbb{N} . \\
P(n): \sum_{r=1}^{n} r \cdot r!=(n+1)!-1
\end{array}
$$

Base Case

$$
\begin{aligned}
& \text { LHS }=\sum_{r=1}^{1} r \cdot r!=1 \cdot 1!=1 \\
& \text { RHS }=(1+1)!-1=2!-1=1 \\
& \text { As LHS }=\text { RHS, } \mathrm{P}(1) \text { is true }
\end{aligned}
$$

Inductive Step
Assume $P(k)$ is true for some $k \in \mathbb{N}$:

$$
\text { ' } P(1) \text { true' and ' } P(k) \text { true } \Rightarrow P(k+1) \text { true' together }
$$

$$
\text { imply, by the PMI, that } P(n) \text { is true } \forall n \in \mathbb{N}
$$

$$
\begin{aligned}
& \sum_{r=1}^{k} r \cdot r!=(k+1)!-1 \underbrace{\text { Inductive }}_{\text {Hypothesis }} \\
& \begin{array}{c}
\text { RTP statement } \\
\sum_{r=1}^{k+1} r \cdot r!=((k+1)+1)!-1
\end{array} \\
& \sum_{r=1}^{k+1} r \cdot r!=\sum_{r=1}^{k} r \cdot r!+(k+1) \cdot(k+1)! \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r \cdot r!=(k+1)!-1+(k+1) \cdot(k+1)! \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r \cdot r!=-1+(1+k+1) \cdot(k+1)! \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r \cdot r!=-1+(k+2) \cdot(k+1)! \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r \cdot r!=-1+(k+2)! \\
& \Rightarrow \quad \sum_{r=1}^{k+1} r \cdot r!=((k+1)+1)!-1 \\
& \text { Hence, } P(k) \text { true } \Rightarrow P(k+1) \text { true }
\end{aligned}
$$

Questions (and 'Answers' !)

Prove by mathematical induction that $\forall n \in \mathbb{N}$:

1) $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$
2) $\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}$
3) $\sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2)$
4) $\sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1}$
5) $\sum_{r=1}^{n} \frac{r}{(r+1)!}=1-\frac{1}{(n+1)!}$
6) $\sum_{r=1}^{n}(8 r-5)=4 n^{2}-n$
