19 / 9 / 16

Vectors - Lesson 1

Vector Components, Addition and Subtraction, Scalar Multiplication, Equality, Parallel Vectors, Magnitude of a Vector and Unit Vectors

LI

- Know what a Vector is (compared to a Scalar).
- +, - and Scalar Multiply vectors.
- Know when vectors are equal.
- Know when vectors are Parallel.
- Work out the Magnitude of a vector.
- Find a Unit Vector parallel to a given vector.

SC

- Arithmetic.

Vector - quantity with magnitude (aka size) and direction. Scalar - quantity with magnitude only. (these are just numbers)

Examples of Vectors

Displacement, velocity, force, electric field.

Examples of Scalars

Distance, speed, frequency, temperature, mass, volume.

> Vectors can exist in n dimensions, but we will only study $2 D$ and $3 D$ vectors

Basic Vectors Terminology and Notation

2D Vectors

$u=\overrightarrow{A B}=\binom{p}{q}^{\text {Components of } u}$
p is the x -component of u
q is the y-component of u

3D Vectors

p is the x-component of v
q is the y-component of v
r is the z-component of v

Equality of Vectors

Two vectors are equal if all their respective components are equal,
i.e. x - components equal to each other, y-components equal to each other (and z for 3D)

Addition and Subtraction of Vectors

The sum (aka resultant) of two vectors is obtained by adding their respective components

The difference of vectors \mathbf{u} and \mathbf{w} (denoted $\mathbf{u}-\mathbf{w}$) is the vector obtained by subtracting the components of w from the components of u

Scalar Multiplication of a Vector (by a Number)

The scalar multiple of u by a number d is the vector obtained by multiplying each component of u by d.

Two vectors \mathbf{u} and \mathbf{v} are parallel if one is a scalar multiple of the other, i.e. if,

$$
\mathbf{u}=\mathrm{d} \mathbf{v}
$$

Magnitude of a Vector

If $u=\overrightarrow{A B}=\binom{p}{q}$, the magnitude of u is the scalar:

$$
|u|=\sqrt{p^{2}+q^{2}}
$$

If $v=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$, the magnitude of v is the scalar:

$$
|v|=\sqrt{p^{2}+q^{2}+r^{2}}
$$

Special Vectors

The Zero Vector

The zero vector is the vector with all components equal to 0

Unit Vector

A unit vector is a vector that has magnitude equal to 1

In 3 dimensions:

- the unit vector in the x-direction is denoted by \mathbf{i}.
- the unit vector in the \mathbf{y}-direction is denoted by \mathbf{j}.
- the unit vector in the z-direction is denoted by \mathbf{k}.

In 2D, there is no \mathbf{k}.
Every 3D vector $\mathbf{v}=\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$ can be written as :
$\mathbf{v}=\mathbf{p} \mathbf{i}+q \mathbf{j}+\mathbf{r} \mathbf{k}$.

In 3D,

In 2D,
$\mathbf{i}=\binom{1}{0}$ and $\mathbf{j}=\binom{0}{1}$
Every 2D vector $u=\binom{p}{q}$ can be written as:
$\mathbf{u}=p \mathbf{i}+q \mathbf{j}$.

Any vector (that's not already a unit vector) can be made into a unit vector by dividing the original vector by its magnitude

Example 1
If $u=\binom{2}{1}$ and $v=\binom{-3}{5}$, find:
(a) $u+2 v$.
(b) $|u|$.
(c) $|2 u-3 v|$.
(a) $u+2 \mathbf{v}=\binom{2}{1}+2\binom{-3}{5}$

$$
\begin{aligned}
& =\binom{2+(-6)}{1+10} \\
& =\binom{-4}{11}
\end{aligned}
$$

(b) $|\mathbf{u}|=\sqrt{2^{2}+1^{2}}$

$$
=\sqrt{5}
$$

(c) $2 u-3 v=2\binom{2}{1}-3\binom{-3}{5}$

$$
\begin{aligned}
& =\binom{4-9}{2-15} \\
& =\binom{-5}{-13}
\end{aligned}
$$

$$
\therefore|2 u-3 v|=\sqrt{(-5)^{2}+(-13)^{2}}
$$

$$
=\sqrt{25+169}
$$

$$
=\sqrt{194}
$$

Example 2

If $\boldsymbol{w}=3 \mathbf{i}+6 \mathbf{j}-\mathbf{k}$, find:
(a) the magnitude of \mathbf{w}.
(b) a unit vector parallel to w.
(a) $|w|=\sqrt{3^{2}+6^{2}+(-1)^{2}}$

$$
=\sqrt{9+36+1}
$$

$$
=\sqrt{46}
$$

(b) A unit vector parallel to \mathbf{w} is obtained by taking the vector \mathbf{w} and dividing each of its components by $|\mathbf{w}|$. So,

CfE Higher Maths

pg. 98-9 Ex.5A All Q

