21 / 12 / 16

Recurrence Relations - Lesson 1

Investigating Recurrence Relations

LI

- Know what a (linear) recurrence relations is.
- Use a recurrence relation to calculate unknown terms.
- Make a recurrence relation to model a real-life situation.

<u>SC</u>

• Use a calculator.

A recurrence relation is a rule for obtaining a sequence given a previous value or previous values

A linear recurrence relation is a recurrence relation of the form:

$$u_{\scriptscriptstyle n+1} \ = \ a \ u_{\scriptscriptstyle n} \ + \ b$$

(a, b are constants with $a \neq 0$)

Find a recurrence relation for the sequence that starts 7, 11, 15, 19,

Any term of the sequence (apart from the first), is obtained by adding 4 to the previous term. So,

$$u_{n+1} = u_n + 4 (u_1 = 7)$$

Find a recurrence relation for the sequence that starts 3, 9, 27, 81,

Any term of the sequence (apart from the first), is obtained by multiplying the previous term by 3. So,

$$u_{n+1} = 3 u_n (u_1 = 3)$$

Given the recurrence relation $u_{n+1} = 5 u_n - 2 (u_0 = 1)$, find the 4^{th} term.

$$u_{n+1} = 5 u_n - 2 (u_0 = 1)$$

$$u_1 = 5 u_0 - 2 = 5 \times 1 - 2 \Rightarrow u_1 = 3$$

$$u_2 = 5 u_1 - 2 = 5 x 3 - 2 \Rightarrow u_2 = 13$$

$$u_3 \ = \ 5 \ u_2 \ - \ 2 \ = \ 5 \ x \ 13 \ - \ 2 \ \Rightarrow \ u_3 \ = \ 63$$

$$u_4 = 5 u_3 - 2 = 5 \times 63 - 2 \Rightarrow u_4 = 313$$

240 ml of a drug is administered to a patient. Every hour 7% of the drug passes out of his bloodstream. To compensate, a further 11 ml dose is given every hour.

- (a) Form a recurrence relation to model this situation.
- (b) Calculate the amount of drug remaining after 4 hours.
- (a) Let u_n be the amount of drug in the bloodstream at the end of the n^{th} hour. If 7% of the original amount passes out, then 93% of the original remains. So,

$$u_{n+1} = 0.93 u_n + 11 (u_0 = 240)$$

(b)

$$u_{\scriptscriptstyle 1} \ = \ 0 \ . \ 93 \ \ x \ \ 240 \ + \ 11$$

$$\Rightarrow \ u_{\scriptscriptstyle 1} \ = \ 234 \; . \; 2$$

$$u_2 = 0.93 \times 234.2 + 11$$

$$\Rightarrow u_2 = 228.806$$

$$u_3 = 0.93 \times 228.806 + 11$$

$$\Rightarrow \underline{u_3 = 223.78958}$$

$$u_4 = 0.93 \times 223.78958 + 11$$

$$\Rightarrow u_4 = 219.124...$$

After 4 hours, 219.1 ml remain.

240 ml of a drug is administered to a patient. Every 3 hours 30 % of the drug passes out of her bloodstream. To compensate, a further 10 ml dose is given every 3 hours.

- (a) Form a recurrence relation to model this situation.
- (b) Calculate the amount of drug remaining after 12 hours.
- (a) Let u_n be the amount of drug in the bloodstream at the end of 3 n hours. Then,

$$u_{n+1} = 0.7 u_n + 10 (u_0 = 240)$$

(b)

$$u_1 = 0.7 \times 240 + 10$$

 \Rightarrow u₁ = 178 (at the end of 3 hours)

$$u_2 = 0.7 \times 178 + 10$$

 \Rightarrow $u_2 = 134.6$ (at the end of 6 hours)

$$u_3 = 0.7 \times 134.6 + 10$$

 \Rightarrow $u_3 = 104.22$ (at the end of 9 hours)

$$u_4 = 0.7 \times 104.22 + 10$$

 \Rightarrow $u_4 = 82.954...$ (at the end of 12 hours)

After 12 hours, 82.95 ml remain.

A sequence is defined by the recurrence relation $u_{n+1} = m u_n + c$. If $u_1 = 32$, $u_2 = 20$ and $u_3 = 14$, find the values of m and c.

$$u_2 = 20$$
 and $u_1 = 32$ gives,

$$u_2 = m u_1 + c$$

 $20 = 32 m + c$

 $u_3 = 14$ and $u_2 = 20$ gives,

$$u_3 = m u_2 + c$$

$$14 = 20 \text{ m} + \text{ c}$$

Subtracting the two equations gives,

$$6 = 12 \text{ m}$$

$$m = 1/2$$

Substituting this into the first equation gives,

$$20 = 32(1/2) + c$$

$$20 = 16 + c$$

$$c = 4$$

CfE Higher Maths

- pg. 321 2 Ex. 15B Q 1 a-g, 2 5
- pg. 323 4 Ex. 15C Q 1 7