

No Solution	
A system is inconsis	stent if the Augmented Matrix is transformed into,
	$ \begin{pmatrix} a & b & c & j \\ 0 & e & f & k \\ 0 & 0 & 0 & l \end{pmatrix} $ (/ \neq 0)
<u>Example 1</u>	
Show that the system	n of equations,
has no solution.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
nus no solution.	
The Augmented Mat	rix is,
	$ \begin{pmatrix} 1 & 1 & 1 & & 150 \\ 1 & 2 & 3 & & 100 \\ 2 & 3 & 4 & & 200 \end{pmatrix} $
$\begin{array}{rcrcr} \textbf{R}_2 \rightarrow \ \textbf{R}_2 & - \ \textbf{R}_1 \\ \textbf{R}_3 \rightarrow \ \textbf{R}_3 & - \ \textbf{2}\textbf{R}_1 \end{array}$	(1 1 1 150)
	$ \begin{pmatrix} 1 & 1 & 1 & & 150 \\ 0 & 1 & 2 & & -50 \\ 0 & 1 & 2 & & -100 \end{pmatrix} $
$R_3 \rightarrow R_3 - R_2$	$ \begin{pmatrix} 1 & 1 & 1 & & 150 \\ 0 & 1 & 2 & -50 \\ 0 & 0 & 0 & & -50 \end{pmatrix} $
Hence, as the LHS is	0 but the RHS in non-zero, there is no solution.

nfinitely i	nany	' 30101101	15							
A system transforme	-		many	solu	ution	s if	the	Augmented	Matrix	i
			a	Ь	c f O	j				
			0	e	T	ĸ				

Example 2

Find the value of k for which the following system has infinitely many solutions, and find the solutions.

x	+	2 <i>y</i>	+	2 <i>z</i>	=	11
x	_	Y	+	3 <i>z</i>	=	8
4 <i>x</i>	-	Y	+	kz	=	35

The Augmented Matrix is,

(1	2	2	11
1	-1		
4	-1	k	35

$\begin{array}{rcl} \textbf{R}_{_2} \rightarrow \ \textbf{R}_{_2} & - \ \textbf{R}_{_1} \\ \textbf{R}_{_3} \rightarrow \ \textbf{R}_{_3} & - \ \textbf{4}\textbf{R}_{_1} \end{array}$	
	1 2 2 11
	0 -3 1 -3
	$ \left \begin{array}{cccccccc} 1 & 2 & 2 & & 11 \\ 0 & -3 & 1 & & -3 \\ 0 & -9 & k & -8 & & -9 \end{array} \right $
$\textbf{R}_{_3} \rightarrow \textbf{R}_{_3} \ - \ \textbf{3R}_{_2}$	
	(1 2 2 11)
	0 -3 1 -3
	$ \begin{pmatrix} 1 & 2 & 2 & & 11 \\ 0 & -3 & 1 & & -3 \\ 0 & 0 & k - 11 & & 0 \end{pmatrix} $

For there to be infinitely many solutions, the last row must consist entirely of zeros; hence, $k - 11 = 0 \Rightarrow k = 11$. The remaining 2 equations can be translated into x, y and z form as,

Putting z = t into the second equation gives $y = \frac{t+3}{3}$ and the first equation then gives, $x = 11 - 2t - \frac{2(t+3)}{3} \Rightarrow x = \frac{27 - 8t}{3}$. Hence, the solutions are,

$$x = \frac{27 - 8t}{3}, y = \frac{t + 3}{3}, z = t \quad (\forall t \in \mathbb{R})$$

Unique Solution	
-----------------	--

A system has <u>a unique solution</u> if the Augmented Matrix is transformed into,

 $\begin{pmatrix} a & b & c & j \\ 0 & e & f & k \\ 0 & 0 & i & l \end{pmatrix}$ $(i \neq 0)$

Example 3

Find the solution to the system,

x	+	Y	+	z	=	2
4 <i>x</i>	+	2 <i>y</i>	+	z	=	4
X	-	Y	+	Z	=	4

The Augmented Matrix is,

(1	1	1	2
4	2	1	4
1	-1	1	2 4 4

2 -4 2

$\begin{array}{rcl} R_{_2} \rightarrow \ R_{_2} & - \ 4R_{_1} \\ R_{_3} \rightarrow \ R_{_3} & - \ R_{_1} \end{array}$			
	(1	1	1
	0	-2	-3
	o	-2	1 -3 0

 $\mathsf{R}_{_{\!2}}\leftrightarrow \ \mathsf{R}_{_{\!3}}$

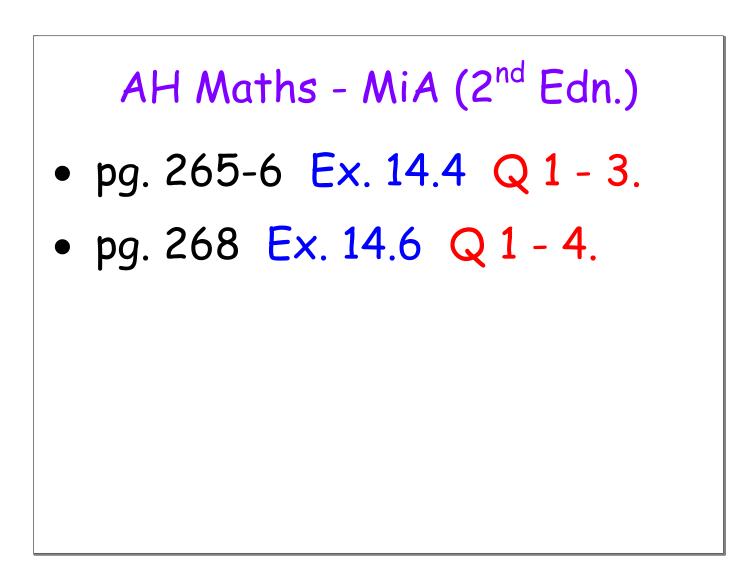
 $R_3 \rightarrow R_3 - R_2$

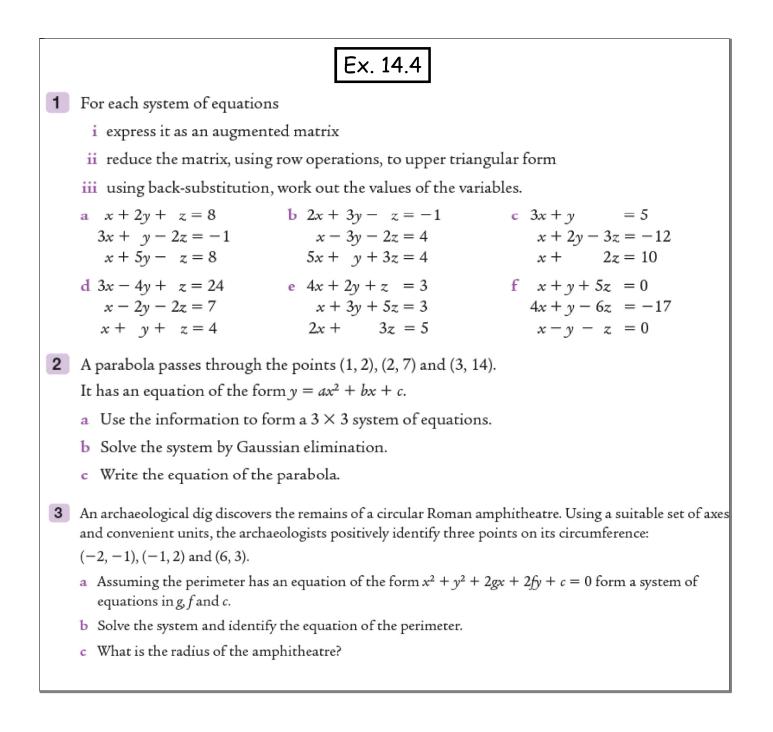
(1	1	1	2 2 -4
0	-2	0	2
0	-2	-3	-4

(1	1	1	2
0	-2	0	2
0	0	-3	2 2 -6

In terms of the unknowns, this is,

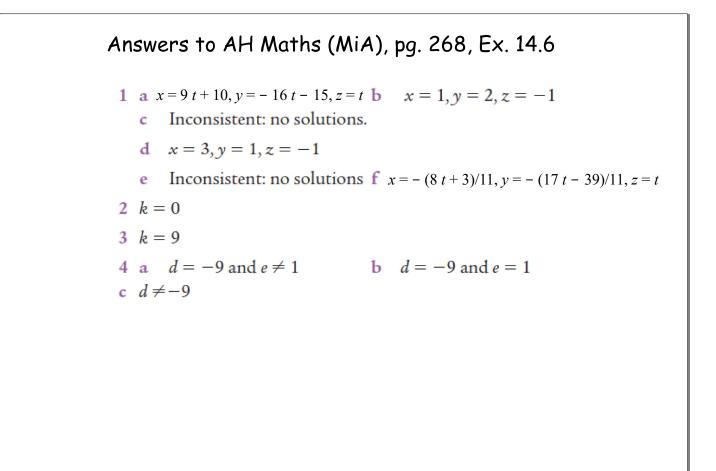
The third and second equations respectively give z = 2 and y = -1. Back-substitution into the first equation then gives x = 2 - 2 + 1 = 1. Hence, the unique solution is x = 1, y = -1, z = 2

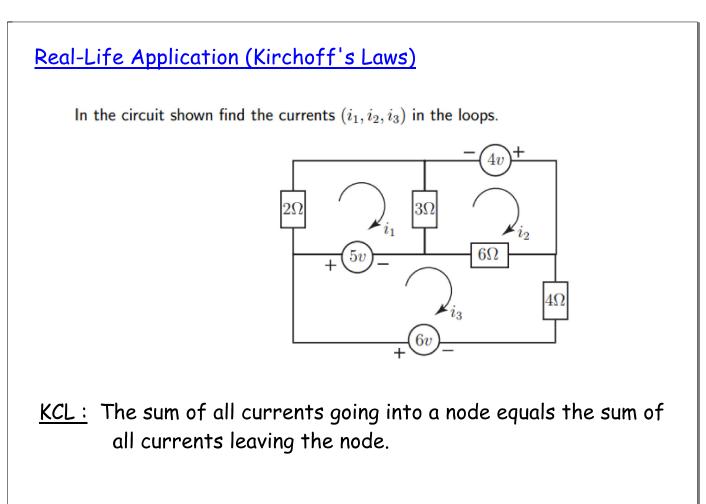




Ex. 14.6 1 Attempt to reduce each of these systems of equations to upper triangular form. Where this is possible quote the unique solution. Where there is a redundant equation, find a general solution. Where there is inconsistency, declare that there are no solutions. a 3x + 2y + 5z = 0 b x + y - z = 4 c 2x - y + 3z = 62x - y + 2z = -2x - 3y - 4z = -12x + y - 2z = 5x + y + 2z = 77x + 4y + z = 104x + y + 7z = 9d 2x - 3y + z = 2 e x + 2y - z = 3 f 5x - 3y - z = -12x + y - 3z = 72x + y + 3z = 3x + 3z = 55x - 2y - z = 14 4x + 2y + 8z = 1020x - y + 13z = -92 The system of equations x + 2y - z = 83x + y + 2z = -1x + y + kz = -6has no solutions. What is the value of k? **3** Find the value of *k* that makes the system of equations x + y + z = 12x + 3y - 2z = -1x - y + kz = 7have infinitely many solutions. 4 For what values of *d* and *e* will the three equations x + 3y - 2z = 82x + y - 3z = 57x - 4y + dz = ehave a no solution b infinitely many solutions c a unique solution?

Answers to AH Maths (MiA), pg. 265-6, Ex. 14.4 1 a $\begin{pmatrix} 1 & 2 & 1 & 8 \\ 3 & 1 & -2 & -1 \\ 1 & 5 & -1 & 8 \end{pmatrix}; \begin{pmatrix} 1 & 2 & 1 & 8 \\ 0 & 1 & 1 & 5 \\ 0 & 0 & 1 & 3 \end{pmatrix}; \begin{pmatrix} x = 1 \\ y = 2 \\ z = 3 \end{pmatrix}$ $\mathbf{b} \quad \begin{pmatrix} 2 & 3 & -1 & | & -1 \\ 1 & -3 & -2 & | & 4 \\ 5 & 1 & 3 & | & 4 \end{pmatrix}; \begin{pmatrix} 1 & 1\frac{1}{2} & -\frac{1}{2} & | & -\frac{1}{2} \\ 0 & 1 & \frac{1}{3} & | & -1 \\ 0 & 0 & 1 & \frac{1}{3} & | & -1 \\ 0 & 0 & 0 & 1 & | & z = 0 \end{pmatrix}; \begin{array}{c} x = 1 \\ y = -1 \\ z = 0 \\ z = 0 \end{array}$ c $\begin{pmatrix} 3 & 1 & 0 & 5 \\ 1 & 2 & -3 & -12 \\ 1 & 0 & 2 & -10 \end{pmatrix}; \begin{pmatrix} 1 & \frac{1}{3} & 0 & 1\frac{2}{3} \\ 0 & 1 & -1\frac{4}{5} & -8\frac{1}{5} \\ z = 4 \end{pmatrix}; \begin{array}{c} x = 2 \\ y = -1 \\ z = 4 \end{pmatrix}$ $e \quad \begin{pmatrix} 4 & 2 & 1 & 3 \\ 1 & 3 & 5 & 3 \\ 2 & 0 & 2 & 5 \end{pmatrix}; \begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{4} & \frac{3}{4} \\ 0 & 1 & 1\frac{9}{10} & \frac{9}{10} \\ y = -1 \\ z = 1 \end{pmatrix}; \begin{array}{c} x = 1 \\ y = -1 \\ z = 1 \end{array}$ f $\begin{pmatrix} 1 & 1 & 5 & 0 \\ 4 & 1 & -6 & -17 \\ 1 & 1 & 1 & -6 \\ 1 & 1 & 1 & -6 \\ 1 & 1 & 1 & -6 \\ 1 & 1 & 1 & -6 \\ 1 & 1 & 1 & -6 \\ 1 & 1 & 1 & -6 \\ 1 & 1 & 1 & 5 \\ 1 & 1 & 1 & 5 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\$ 2 a a+b+c=2, 4a+2b+c=7, 9a+3b+c=14**b** a = 1, b = 2, c = -1c $y = x^2 + 2x - 1$ 3 a -4g - 2f + c = -5, -2g + 4f + c = -5,12g + 6f + c = -45**b** $g = -3, f = 1, c = -15; x^2 + y^2 - 6x + 2y - 15 = 0$ c r=5





<u>KVL</u>: In any loop around a circuit, the sum of the emfs equals the sum of the potential differences.

For the above circuit, show that :

$$i_1 = \frac{34}{15}$$
 $i_2 = \frac{19}{9}$
 $i_3 = \frac{41}{30}$