12 / / / 18
 Matrices and Systems of Equations - Lesson 1

Gaussian Elimination

LI

- Use Gaussian Elimination to solve a system of 3 equations in 3 variables.

SC

- Elementary Row Operations.
- Primary school arithmetic.

Systems of Equations

A system of m linear equations in n unknowns is a collection of linear equations,

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

where $a_{i j}, b_{i} \in \mathbb{R}$.

- Unique solution.
- Infinitely many solutions.
- No solution.

A consistent system of linear equations is one that has a unique solution or infinitely many solutions.

An inconsistent system of linear equations is one that has no solutions.

Elementary Row Operations and Gaussian Elimination

The Coefficient Matrix of the system,

$$
\begin{aligned}
& a x+b y+c z=j \\
& d x+e y+f z=k \\
& g x+h y+i z=1
\end{aligned}
$$

is the arrangement (aka matrix),

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

whereas the Augmented Matrix is,

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
d & e & f & k \\
g & h & i & l
\end{array}\right)
$$

Elementary Row Operations on the
Augmented Matrix are used to solve the system :

EROs don't change the solution of the system

We always aim to get zeroes in the following places for the augmented matrix:

$$
\bullet
$$

-
-
-
8

No Solution

A system is inconsistent if the Augmented Matrix is transformed into,

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & 0 & l
\end{array}\right) \quad(l \neq 0)
$$

Example 1

Show that the system of equations,

$$
\begin{aligned}
x+y+z & =150 \\
x+2 y+3 z & =100 \\
2 x+3 y+4 z & =200
\end{aligned}
$$

has no solution.

The Augmented Matrix is,

$$
\left(\begin{array}{lll|l}
1 & 1 & 1 & 150 \\
1 & 2 & 3 & 100 \\
2 & 3 & 4 & 200
\end{array}\right)
$$

$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-2 R_{1}$

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 150 \\
0 & 1 & 2 & -50 \\
0 & 1 & 2 & -100
\end{array}\right)
$$

$R_{3} \rightarrow R_{3}-R_{2}$

$$
\left(\begin{array}{lll|l}
1 & 1 & 1 & 150 \\
0 & 1 & 2 & -50 \\
0 & 0 & 0 & -50
\end{array}\right)
$$

Hence, as the LHS is 0 but the RHS in non-zero, there is no solution.

A system has infinitely many solutions if the Augmented Matrix is transformed into,

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example 2

Find the value of k for which the following system has infinitely many solutions, and find the solutions.

$$
\begin{aligned}
x+2 y+2 z & =11 \\
x-y+3 z & =8 \\
4 x-y+k z & =35
\end{aligned}
$$

The Augmented Matrix is,

$$
\left(\begin{array}{ccc|c}
1 & 2 & 2 & 11 \\
1 & -1 & 3 & 8 \\
4 & -1 & k & 35
\end{array}\right)
$$

$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-4 R_{1}$

$$
\left(\begin{array}{ccc|c}
1 & 2 & 2 & 11 \\
0 & -3 & 1 & -3 \\
0 & -9 & k-8 & -9
\end{array}\right)
$$

$R_{3} \rightarrow R_{3}-3 R_{2}$

$$
\left(\begin{array}{ccc|c}
1 & 2 & 2 & 11 \\
0 & -3 & 1 & -3 \\
0 & 0 & k-11 & 0
\end{array}\right)
$$

For there to be infinitely many solutions, the last row must consist entirely of zeros; hence, $k-11=0 \Rightarrow k=11$. The remaining 2 equations can be translated into x, y and z form as,

$$
\begin{aligned}
x+2 y+2 z & =11 \\
-3 y+z & =-3
\end{aligned}
$$

Putting $z=t$ into the second equation gives $y=\frac{t 13}{3}$ and the first equation then gives, $x=11-2 t-\frac{2(t+3)}{3} \Rightarrow x=\frac{27-8 t}{3}$.
Hence, the solutions are,

$$
x=\frac{27-8 t}{3}, y=\frac{t+3}{3}, z=t \quad(\forall t \in \mathbb{R})
$$

Unique Solution

> A system has a unique solution if the Augmented Matrix is transformed into,

$$
\left(\begin{array}{lll|l}
a & b & c & j \\
0 & e & f & k \\
0 & 0 & i & l
\end{array}\right) \quad(i \neq 0)
$$

Example 3

Find the solution to the system,

$$
\begin{aligned}
x+y+z & =2 \\
4 x+2 y+z & =4 \\
x-y+z & =4
\end{aligned}
$$

The Augmented Matrix is,

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
4 & 2 & 1 & 4 \\
1 & -1 & 1 & 4
\end{array}\right)
$$

$R_{2} \rightarrow R_{2}-4 R_{1}$
$R_{3} \rightarrow R_{3}-R_{1}$

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & -3 & -4 \\
0 & -2 & 0 & 2
\end{array}\right)
$$

$R_{2} \leftrightarrow R_{3}$

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & 0 & 2 \\
0 & -2 & -3 & -4
\end{array}\right)
$$

$R_{3} \rightarrow R_{3}-R_{2}$

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & 0 & 2 \\
0 & 0 & -3 & -6
\end{array}\right)
$$

In terms of the unknowns, this is,

$$
\begin{aligned}
x+y+z & =2 \\
-2 y & =2 \\
-3 z & =-6
\end{aligned}
$$

The third and second equations respectively give $z=2$ and $y=-1$. Back-substitution into the first equation then gives $x=2-2+1=1$. Hence, the unique solution is $x=1, y=-1, z=2$

AH Maths - MiA (2 ${ }^{\text {nd }}$ Edh.)

- pg. 265-6 Ex. 14.4 Q 1 - 3.
- pg. 268 Ex. 14.6 Q $1-4$.

Ex. 14.4

1 For each system of equations
i express it as an augmented matrix
ii reduce the matrix, using row operations, to upper triangular form
iii using back-substitution, work out the values of the variables.
a $x+2 y+z=8$
b $2 x+3 y-z=-1$
c $3 x+y=5$
$3 x+y-2 z=-1$
$x-3 y-2 z=4$
$x+2 y-3 z=-12$
$x+5 y-z=8$
$5 x+y+3 z=4$
$x+\quad 2 z=10$
d $3 x-4 y+z=24$
e $\begin{aligned} 4 x+2 y+z & =3 \\ x+3 y+5 z & =3\end{aligned}$
f $x+y+5 z=0$
$x-2 y-2 z=7$
$x+3 y+5 z=3$
$4 x+y-6 z=-17$
$x+y+z=4$
$2 x+\quad 3 z=5$
$x-y-z=0$

2 A parabola passes through the points (1,2), (2, 7) and (3, 14).
It has an equation of the form $y=a x^{2}+b x+c$.
a Use the information to form a 3×3 system of equations.
b Solve the system by Gaussian elimination.
c Write the equation of the parabola.
3 An archaeological dig discovers the remains of a circular Roman amphitheatre. Using a suitable set of axes and convenient units, the archaeologists positively identify three points on its circumference:
$(-2,-1),(-1,2)$ and $(6,3)$.
a Assuming the perimeter has an equation of the form $x^{2}+y^{2}+2 g x+2 f y+c=0$ form a system of equations in g, f and c.
b Solve the system and identify the equation of the perimeter.
c What is the radius of the amphitheatre?

Ex. 14.6

1 Attempt to reduce each of these systems of equations to upper triangular form.

- Where this is possible quote the unique solution.
- Where there is a redundant equation, find a general solution.
- Where there is inconsistency, declare that there are no solutions.
a $3 x+2 y+5 z=0$
$2 x+y-2 z=5$
$7 x+4 y+z=10$
b $x+y-z=4$
c $2 x-y+3 z=6$
$2 x-y+2 z=-2$
$x+y+2 z=7$
$x-3 y-4 z=-1$
$4 x+y+7 z=9$
d $2 x-3 y+z=2$
$x+y-3 z=7$
$5 x-2 y-z=14$
e $x+2 y-z=3$
$x+\quad 3 z=5$
$4 x+2 y+8 z=10$
f $5 x-3 y-z=-12$
$2 x+y+3 z=3$
$20 x-y+13 z=-9$

2 The system of equations

$$
\begin{aligned}
x+2 y-z & =8 \\
3 x+y+2 z & =-1 \\
x+y+k z & =-6
\end{aligned}
$$

has no solutions. What is the value of k ?
3 Find the value of k that makes the system of equations

$$
\begin{aligned}
x+y+z & =1 \\
2 x+3 y-2 z & =-1 \\
x-y+k z & =7
\end{aligned}
$$

have infinitely many solutions.
4 For what values of d and e will the three equations

$$
\begin{array}{r}
x+3 y-2 z=8 \\
2 x+y-3 z=5 \\
7 x-4 y+d z=e
\end{array}
$$

have a no solution
b infinitely many solutions
c a unique solution?

Answers to AH Maths (MiA), pg. 265-6, Ex. 14.4

$$
\begin{aligned}
& 1 \text { a }\left(\begin{array}{rrr:r}
1 & 2 & 1 & 8 \\
3 & 1 & -2 & -1 \\
1 & 5 & -1 & 8
\end{array}\right) ;\left(\begin{array}{rrr:r}
1 & 2 & 1 & 8 \\
0 & 1 & 1 & 5 \\
0 & 0 & 1 & 3
\end{array}\right) ; \begin{array}{l}
x=1 \\
y=2 \\
z=3
\end{array} \\
& \text { b }\left(\begin{array}{rrr:r}
2 & 3 & -1 & -1 \\
1 & -3 & -2 & 4 \\
5 & 1 & 3 & 4
\end{array}\right) ;\left(\begin{array}{rrr:r}
1 & 1 \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
0 & 1 & \frac{1}{3} & -1 \\
0 & 0 & 1 & 0
\end{array}\right) ; \begin{array}{c}
x=1 \\
y=-1 \\
z=0
\end{array} \\
& \text { c }\left(\begin{array}{rrr:r}
3 & 1 & 0 & 5 \\
1 & 2 & -3 & -12 \\
1 & 0 & 2 & 10
\end{array}\right) ;\left(\begin{array}{rrr:r}
1 & \frac{1}{3} & 0 & 1 \frac{2}{3} \\
0 & 1 & -1 \frac{4}{5} & -8 \frac{1}{5} \\
0 & 0 & 1 & 4
\end{array}\right) ; \begin{array}{c}
x=2 \\
y=-1 \\
z=4
\end{array} \\
& \mathrm{~d} \quad\left(\begin{array}{rrr:r}
3 & -4 & 1 & 24 \\
1 & -2 & -2 & 7 \\
1 & 1 & 1 & 4
\end{array}\right) ;\left(\begin{array}{rrr:r}
1 & -1 \frac{1}{3} & \frac{1}{3} & 8 \\
0 & 1 & 3 \frac{1}{2} & 1 \\
0 & 0 & 1 & 1
\end{array}\right) ; \begin{array}{c}
x=5 \\
0=-2 \\
z=1
\end{array} \\
& \mathrm{e}\left(\begin{array}{ccc:c}
4 & 2 & 1 & 3 \\
1 & 3 & 5 & 3 \\
2 & 0 & 3 & 5
\end{array}\right) ;\left(\begin{array}{ccc:c}
1 & \frac{1}{2} & \frac{1}{4} & \frac{3}{4} \\
0 & 1 & 1 \frac{9}{10} & \frac{9}{10} \\
0 & 0 & 1 & 1
\end{array}\right) ; \begin{array}{c}
x=1 \\
y=-1 \\
z=1
\end{array} \\
& \text { f }\left(\begin{array}{rrr:r}
1 & 1 & 5 & 0 \\
4 & 1 & -6 & -17 \\
1 & -1 & -1 & 0
\end{array}\right) ;\left(\begin{array}{rrr:r}
1 & 1 & 5 & 0 \\
0 & 1 & 8 \frac{2}{3} & \frac{2}{3} \\
0 & 0 & 1 & 1
\end{array}\right) ; \begin{array}{c}
x=-2 \\
y=-3 \\
z=1
\end{array} \\
& 2 \text { a } a+b+c=2,4 a+2 b+c=7,9 a+3 b+c=14 \\
& \text { b } \quad a=1, b=2, c=-1 \\
& \text { c } y=x^{2}+2 x-1 \\
& 3 \text { a }-4 g-2 f+c=-5,-2 g+4 f+c=-5 \text {, } \\
& 12 g+6 f+c=-45 \\
& \text { b } g=-3, f=1, c=-15 ; x^{2}+y^{2}-6 x+2 y-15=0 \\
& \text { c } r=5
\end{aligned}
$$

Answers to AH Maths (MiA), pg. 268, Ex. 14.6

1 a $x=9 t+10, y=-16 t-15, z=t$ b $\quad x=1, y=2, z=-1$
c Inconsistent: no solutions.
d $x=3, y=1, z=-1$
e Inconsistent: no solutions $\mathrm{f} x=-(8 t+3) / 11, y=-(17 t-39) / 11, z=t$
$2 k=0$
$3 k=9$
4 a $\quad d=-9$ and $e \neq 1 \quad$ b $\quad d=-9$ and $e=1$
c $d \neq-9$

Real-Life Application (Kirchoff's Laws)

In the circuit shown find the currents $\left(i_{1}, i_{2}, i_{3}\right)$ in the loops.

KCL: The sum of all currents going into a node equals the sum of all currents leaving the node.

KVL: In any loop around a circuit, the sum of the emfs equals the sum of the potential differences.

For the above circuit, show that :

$$
i_{1}=\frac{34}{15} \quad i_{2}=\frac{19}{9} \quad i_{3}=\frac{41}{30}
$$

