8 / 9 / 16

Functions - Lesson 1

Functions - Domains and Ranges

LI
- Know what a function is.
- Know what the domain and range of a function are.
- Find the domain and range of a function.

SC
- General features of graphs of linear, quadratic, trigonometric, exponential and logarithmic functions.
Functions

A function can be thought of as a machine; something goes in and something comes out. The only requirement is that a specific input cannot give more than one output.

If \(f \) is a function, all the possible inputs taken together is the domain of \(f \) (\(\text{dom} \ f \)) and all the possible outputs taken together is called the range of \(f \) (\(\text{ran} \ f \)).

A function is normally written as an equation, but does not have to be written so.

If a function has input \(x \) and corresponding output \(y \), then we write \(f(x) = y \).

When we specify a function, sometimes the outputs are a smaller part of a bigger collection \(B \) (this bigger collection is called the codomain of \(f \)). If the function has domain \(A \), then we normally write:

\[
 f : A \longrightarrow B
\]
Example 1

Show that the following is a function and state the domain and range.

\[
\text{domain} \quad f \quad \text{codomain}
\]

\[
1 \quad 2 \\
-7 \quad 4 \\
2 \quad 0
\]

Every element of the domain gets sent to a single element in the codomain; so, \(f \) is a function.

\[
\text{dom } f = \{1, -7, 2\} \\
\text{ran } f = \{0, 2\}
\]
Example 2

Show that the following is not a function.

Not every element in the domain gets sent to some element in the codomain; so, \(f \) is not a function.
Example 3

Show that the following is not a function.

3 (in the domain) does not get sent to a unique element in the codomain (3 gets sent to 8 and 6); so, f is not a function.
Finding Domains and Ranges of Functions Written as a Formula

Sketching the graph of a function often helps to find the domain and range of that function.

The domain is all possible x - values for which the function makes sense, i.e. for which a y - value can be worked out.

The only times a y - value cannot be worked out are when:

- a fraction has a 0 denominator.
- a square root has a negative.
- taking the logarithm of 0 or negative number.

The range is all possible y - values that can be worked out.

The range is often easily obtained from the graph of the function.

If a y - value can be worked out for all possible x - values, we say that the function has domain \mathbb{R}.

When we write, $x \in \mathbb{R}$, it means that ' x is a real number'.
Example 4

Find the domains and ranges of the following functions:

(a) \(f(x) = 4x - 7 \).

(b) \(g(x) = (x - 3)^2 + 2 \).

(c) \(h(x) = \sin x \).

(d) \(k(x) = 6^x \).

(e) \(L(x) = \log_5(2x + 17) \).

(a) There is no restriction on the \(x \)-values, so all \(x \)-values are possible. From the graph, all \(y \)-values are possible too. Thus,

\[
\text{dom } f = \mathbb{R} \quad \text{allowed to write 'all } x \text{ - values'}
\]
\[
\text{ran } f = \mathbb{R} \quad \text{and 'all } y \text{ - values'}
\]

(b) There is no restriction on the \(x \)-values; however, there is a minimum turning point at \((3, 2)\), so the \(y \)-values cannot go below \(2 \). So,

\[
\text{dom } g = \mathbb{R} \quad \text{allowed to write 'all } x \text{ - values'}
\]
\[
\text{ran } g = \{ y \in \mathbb{R} : y \geq 2 \} \quad \text{and '} y \geq 2 \text{'}
\]

(c) There is no restriction on the \(x \)-values; however, the \(y \)-values are between \(-1\) and \(1\) (including both). So,

\[
\text{dom } h = \mathbb{R} \quad \text{allowed to write 'all } x \text{ - values'}
\]
\[
\text{ran } h = \{ y \in \mathbb{R} : -1 \leq y \leq 1 \} \quad \text{and '}-1 \leq y \leq 1\text{'}
\]
(d) There is no restriction on the \(x \) - values; however, the \(y \) - values are always above the \(x \) - axis. So,

\[
\text{dom } k = \mathbb{R} \\
\text{ran } k = \{ y \in \mathbb{R} : y > 0 \} \\
\text{allowed to write} \\
'\text{all } x \text{- values}' \\
'\text{and } y > 0' \\
\]

(e) There is no restriction on the \(y \) - values; however, we require \(2x + 17 > 0 \) (can't take the log of 0 or a negative). So, we require \(x > -17/2 \). Hence,

\[
\text{dom } L = \{ x \in \mathbb{R} : x > -17/2 \} \\
\text{ran } L = \mathbb{R} \\
\text{allowed to write} \\
'x > -17/2' \\
'\text{and all } y \text{- values}' \\
\]
Example 5

Find the largest possible domains of these functions:

(a) \(A (x) = \frac{1}{2x + 5} \).

(b) \(P (x) = \sqrt{9 - 4x} \).

(c) \(n (x) = \frac{1}{\sqrt{x + 7}} \).

(d) \(D (x) = 2 \log_{10} (1 - 9x) \).

(e) \(r (x) = 3 \cos (4x - 5.67) + 0.6 \).

The 'largest possible domain' just means what we call 'the domain'.

(a) We require the denominator to be non-zero. The only time when the denominator is 0 is when \(2x + 5 = 0 \), i.e. when \(x = -5/2 \). So,

\[\text{dom } A = \{ x \in \mathbb{R} : x \neq -5/2 \} \]

allowed to write 'all } x \text{-values except } -5/2 \text{' or ' } x \neq -5/2 \text{'.}

(b) We require the root to be non-negative, i.e. we need \(9 - 4x \geq 0 \). This gives \(x \leq 9/4 \). So,

\[\text{dom } P = \{ x \in \mathbb{R} : x \leq 9/4 \} \]

allowed to write 'all } x \text{-values less than or equal to } 9/4 \text{' or ' } x \leq 9/4 \text{'.}

(c) We require \(x + 7 > 0 \). This gives \(x > -7 \). So,

\[\text{dom } n = \{ x \in \mathbb{R} : x > -7 \} \]

allowed to write 'all } x \text{-values greater than } -7 \text{' or ' } x > -7 \text{'.
(d) We require $1 - 9x > 0$. This gives $x < 1/9$.
So,

$$\text{dom } D = \{ x \in \mathbb{R} : x < 1/9 \}$$

allowed to write 'all x - values less than 1/9' or 'x < 1/9'

(e) There is no restriction on the x - values.
So,

$$\text{dom } r = \mathbb{R}$$

allowed to write 'all x - values'
CfE Higher Maths

pg. 85 Ex. 4A All Q

pg. 91 Ex. 4D Q 1, 2