8 / 9 / 16

Functions - Lesson 1

Functions - Domains and Ranges

LI

- Know what a function is.
- Know what the domain and range of a function are.
- Find the domain and range of a function.

SC

- General features of graphs of linear, quadratic, trigonometric, exponential and logarithmic functions.

Functions

A function can be thought of as a machine; something goes in and something comes out. The only requirement is that a specific input cannot give more than one output.

If f is a function, all the possible inputs taken together is the domain of $f(\operatorname{dom} f)$ and all the possible outputs taken together is called the range of f (ran f).

A function is normally written as an equation, but does not have to be written so.

If a function has input x and corresponding output y, then we write $f(x)=y$.

When we specify a function, sometimes the outputs are a smaller part of a bigger collection B (this bigger collection is called the codomain of f). If the function has domain A, then we normally write :

$$
f: A \longrightarrow B
$$

Example 1

Show that the following is a function and state the domain and range.

Every element of the domain gets sent to a single element in the codomain; so, f is a function.

$$
\begin{aligned}
\operatorname{dom} f & =\{1,-7,2\} \\
\operatorname{ran} f & =\{0,2\}
\end{aligned}
$$

Example 2

Show that the following is not a function.

Not every element in the domain gets sent to some element in the codomain; so, f is not a function.

Example 3
Show that the following is not a function.

3 (in the domain) does not get sent to a unique element in the codomain (3 gets sent to 8 and 6); so, f is not a function.

Finding Domains and Ranges of Functions Written as a Formula Sketching the graph of a function often helps to find the domain and range of that function

The domain is all possible x-values for which the function makes sense, i.e. for which a y-value can be worked out

The only times a y-value cannot be worked out are when :

- a fraction has a 0 denominator.
- a square root has a negative.
- taking the logarithm of 0 or negative number.

The range is all possible y-values that can be worked out

The range is often easily obtained from the graph of the function.

If a y-value can be worked out for all possible x-values, we say that the function has domain \mathbb{R}.

When we write, $x \in \mathbb{R}$, it means that ' x is a real number'.

Example 4

Find the domains and ranges of the following functions:
(a) $f(x)=4 x-7$.
(b) $g(x)=(x-3)^{2}+2$.
(c) $h(x)=\sin x$.
(d) $k(x)=6^{x}$.
(e) $L(x)=\log _{5}(2 x+17)$.
(a) There is no restriction on the x-values, so all x-values are possible. From the graph, all y-values are possible too. Thus,

$$
\begin{array}{rlr}
\operatorname{dom} f & =\mathbb{R} & \text { allowed to write 'all } x \text { - values' } \\
\operatorname{ran} f & =\mathbb{R} & \text { and 'all } y \text { - values' }
\end{array}
$$

(b) There is no restriction on the x-values: however, there is a minimum turning point at $(3,2)$, so the y-values cannot go below 2 . So,

$$
\begin{array}{ll}
\operatorname{dom} g=\mathbb{R} & \begin{array}{l}
\text { allowed to write } \\
\text { 'all } x \text {-values' }
\end{array} \\
\operatorname{ran} g=\{y \in \mathbb{R}: y \geq 2\} & \text { and 'y } \geq 2^{\prime}
\end{array}
$$

(c) There is no restriction on the x-values; however, the y-values are between - 1 and 1 (including both). So,

$$
\begin{aligned}
\operatorname{dom} h & =\mathbb{R} \\
\operatorname{ran} h= & \{y \in \mathbb{R}:-1 \leq y \leq 1\} \\
& \begin{array}{c}
\text { allowed to write } \\
\text { and ' } x \text { - values' }
\end{array} \\
& =y \leq 1^{\prime}
\end{aligned}
$$

(d) There is no restriction on the x-values; however, the y-values are always above the x-axis. So,

$$
\begin{aligned}
\operatorname{dom} k & =\mathbb{R} \\
\operatorname{ran} k & =\{y \in \mathbb{R}: y>0\} \\
& \begin{aligned}
\text { allowed to write } \\
\text { 'all } x \text { - values' } \\
\text { and } y>0 \text { ' }
\end{aligned}
\end{aligned}
$$

(e) There is no restriction on the y-values; however, we require $2 x+17>0$ (can't take the log of 0 or a negative). So, we require $x>-17 / 2$. Hence,

$$
\begin{aligned}
\operatorname{dom} L= & \{x \in \mathbb{R}: x>-17 / 2\} \\
\operatorname{ran} L= & \mathbb{R} \\
& \quad \text { allowed to write } \\
& \text { ' } x>-17 / 2 \text { ' } \\
& \text { and 'ally-values' }
\end{aligned}
$$

Example 5

Find the largest possible domains of these functions:
(a) $A(x)=\frac{1}{2 x+5}$.
(b) $P(x)=\sqrt{9-4 x}$.
(c) $n(x)=\frac{1}{\sqrt{x+7}}$.
(d) $D(x)=2 \log _{17}(1-9 x)$.
(e) $r(x)=3 \cos (4 x-5.67)+0.6$.

The 'largest possible domain' just means what we call 'the domain'.
(a) We require the denominator to be non-zero. The only time when the denominator is 0 is when $2 x+5=0$, i.e. when $x=-5 / 2$. So,

$$
\begin{gathered}
\operatorname{dom} A=\{x \in \mathbb{R}: x \neq-5 / 2\} \\
\text { allowed to write 'all } x \text { - values except }-5 / 2^{\prime} \text { or ' } x \neq-5 / 2 \text { ' }
\end{gathered}
$$

(b) We require the root to be non-negative, i.e. we need $9-4 x \geq 0$. This gives $x \leq 9 / 4$. So,

$$
\operatorname{dom} P=\{x \in \mathbb{R}: x \leq 9 / 4\}
$$

allowed to write 'all x - values less than or equal to $9 / 4$ ' or ' $x \leq 9 / 4$ '
(c) We require $x+7>0$. This gives $x>-7$. So,
$\operatorname{dom} n=\{x \in \mathbb{R}: x>-7\}$
allowed to write 'all x - values greater than -7 ' or ' $x>-7$ '
(d) We require $1-9 x>0$. This gives $x<1 / 9$. So,

$$
\operatorname{dom} D=\{x \in \mathbb{R}: x<1 / 9\}
$$

allowed to write 'all x - values less than $1 / 9$ ' or ' $x<1 / 9$ '
(e) There is no restriction on the x-values. So,

$$
\operatorname{dom} r=\mathbb{R}
$$

allowed to write 'all x-values'

CfE Higher Maths

pg. 85 Ex. 4A All Q
pg. 91 Ex. 4D Q 1, 2

