$18 / 2 / 16$
 Exponentials and Logarithms - Lesson 1

Exponentials, Logarithms and Logarithmic Rules

LI

- Know what a logarithm is and how it is related to an exponential.
- Know and use the Logarithmic Rules.

SC

- Rules of indices.

$$
a^{b}=c \quad \begin{aligned}
& \text { 'a to the power } \\
& \text { of } b \text { equals } c ' \\
& b=\log _{a} c \quad
\end{aligned} \begin{aligned}
& \text { 'b equals the base } \\
& a \text { logarithm of } c '
\end{aligned}
$$

A logarithm is a power

Examples

$$
2^{3}=8 \longleftrightarrow 3=\log _{2} 8
$$

$$
p^{5}=6 \longleftrightarrow 5=\log _{p} 6
$$

$$
4^{x}=y \quad \longleftrightarrow x=\log _{4} y
$$

$$
5=\log _{n} 7 \longleftrightarrow n^{5}=7
$$

$$
4=\log _{2} 16 \longleftrightarrow 2^{4}=16
$$

$$
w=\log _{a} x \longleftrightarrow a^{w}=x
$$

Rules of Logarithms

$$
\begin{aligned}
& \log _{\circ}(p \times q)=\log _{\circ} p+\log _{\circ} q \quad \begin{array}{c}
\text { 'multiplication goes } \\
\text { to addition' }
\end{array} \\
& \begin{array}{l}
\text { WARNING: } \\
\log _{\circ}(p+q) \neq \log _{\circ} p+\log _{\circ} q
\end{array}
\end{aligned}
$$

$$
\log _{b}(p \div q)=\log _{b} p-\log _{b} q
$$

'division goes to subtraction'

$$
\begin{aligned}
& \text { WARNING: } \\
& \log _{\mathrm{b}}(p-q) \neq \log _{\mathrm{b}} p-\log _{\mathrm{b}} q
\end{aligned}
$$

$$
\log _{b} p^{n}=n \log _{b} p \quad \quad \text { 'power goes down' }
$$

$$
\log _{b} 1=0
$$

'log one is zero'
$\log _{b} b=1$
' $\log b b$ is one'

These 5 rules are derived from the corresponding rules of indices

Example 1

Simplify $\log _{7} 3+\log _{7} 21$.

$$
\log _{7} 3+\log _{7} 21=\log _{7} 3+\log _{7}(3 \times 7)
$$

$$
\begin{aligned}
& =\log _{,} 3+\log _{7} 3+\log _{7} 7 \\
& =2 \log _{7} 3+1
\end{aligned}
$$

Example 2

Simplify $(1 / 3) \log _{2} 8-(1 / 5) \log _{2} 32$.

$$
\begin{aligned}
& (1 / 3) \log _{2} 8-(1 / 5) \log _{2} 32 \\
= & (1 / 3) \log _{2} 2^{3}-(1 / 5) \log _{2} 2^{5} \\
= & (1 / 3 \times 3) \log _{2} 2-(1 / 5 \times 5) \log _{2} 2 \\
= & \log _{2} 2-\log _{2} 2 \\
= & 0
\end{aligned}
$$

Example 3

Simplify $2 \log _{3} 9+\log _{3} 27-4 \log _{3} 81$.

$$
\begin{aligned}
& 2 \log _{3} 9+\log _{3} 27-4 \log _{3} 81 \\
= & 2 \log _{3} 3^{2}+\log _{3} 3^{3}-4 \log _{3} 3^{4} \\
= & 4 \log _{3} 3+3 \log _{3} 3-16 \log _{3} 3 \\
= & -9 \log _{3} 3 \\
= & -9(1) \\
= & -9
\end{aligned}
$$

Example 4

If $\log \cdot y=\log _{.} 7+4 \log _{\circ} x$, express y in terms of x.

$$
\begin{array}{rlrl}
& \log _{a} y & =\log _{a} 7+4 \log _{a} x \\
\Rightarrow \quad \log _{a} y & =\log _{a} 7+\log _{a} x^{4} \\
\Rightarrow \quad \log _{a} y & =\log _{a}\left(7 x^{4}\right) \\
\therefore \quad & y & =7 x^{4}
\end{array}
$$

Example 5

If $\log _{F} W=\log _{F} r-17 \log _{F} N$, express w in terms of r and N.

$$
\begin{array}{rlrl}
& \log _{F} W & =\log _{F} r-17 \log _{\digamma} N \\
\Rightarrow \quad \log _{F} W & =\log _{\digamma} r-\log _{\digamma} N^{17} \\
\Rightarrow \quad \log _{F} W & =\log _{F}\left(r / N^{17}\right) \\
& \therefore \quad W & =r / N^{17}
\end{array}
$$

CfE Higher Maths

pg. 6 Ex. 1B All Q
pg. 9-10 Ex. 1C Q1-4

$$
\text { pg. } 11 \text { Ex. } 1 \mathrm{D} \text { All Q }
$$

