Evaluating Polynomials and Nested Form

LI

- Know the difference between a Polynomial Expression, a Polynomial Equation and a Polynomial Function.
- Use the Nested Form to evaluate a polynomial function.

SC

- +, - integers.

A Polynomial Expression is an expression of the form :
$a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x^{1}+a_{0} x^{0}$
where n is a whole number, a_{0}, \ldots, a_{n} are called coefficients
a_{n} is the leading coefficient

A Polynomial Equation is an equation obtained by putting a polynomial expression equal to 0

A Polynomial Function is a function obtained by putting a polynomial expression equal to $f(x)$

The degree of a polynomial is the value of the highest power

- Degree 0 polynomial - constant number (e.g. $4=4 x^{0}$)
- Degree 1 polynomial-linear (e.g. $3-6 x$)
- Degree 2 polynomial-quadratic (e.g. $x^{2}-6+5 x$)
- Degree 3 polynomial-cubic (e.g. $x^{2}-2 x^{3}+9 x-8$)
- Degree 4 polynomial-quartic (e.g. $x^{4}+x$)

Examples of Polynomials

$4 x^{3}-3.7 x^{2}+x$
$x^{4}+0.5 x^{2}+x^{3}-\pi$
Examples of Non - Polynomials
$x^{2 / 3}+5 x^{2}-3$
$x^{0.6}+8 x^{3}+2$

In Higher Maths, polynomials tend to have integer coefficients.

A polynomial function is evaluated by substituting in an x-value

Quick way of doing this : Nested Form (aka Horner's Method)

$$
\begin{aligned}
& f(x)=a x^{3}+b x^{2}+c x+d \\
& f(x)=x\left(a x^{2}+b x+c\right)+d \\
& f(x)=x(x(a x+b)+c)+d
\end{aligned}
$$

This can be done without mentioning the variable (x) explicitly.
For example, to work out $f(x)$ at a specific value $x=p$,
i. e. to calculate $f(p)$, we use a shorthand:

Example 1
If $f(x)=2 x^{3}-x^{2}+3 x+7$, calculate $f(2)$.

2 \begin{tabular}{r}

2

x^{3} \& x^{2} \& x^{1} \& x^{0}

2 \& -1 \& 3 \& 7

\& 4 \& 6 \& 18

2 \& 3 \& 9 \& 25
\end{tabular}

$$
\therefore \quad f(2)=25
$$

Example 2
Given that $g(x)=2 x^{3}-5 x^{2}+3$, evaluate $g(-3)$.

$$
\begin{array}{c|cccc}
-3 & \begin{array}{cccc}
x^{3} & x^{2} & x^{1} & x^{0} \\
2 & -5 & 0 & 3 \\
& -6 & 33 & -99 \\
\hline & 2 & -11 & 33
\end{array}-96 \\
& \therefore & g(-3)=-96
\end{array}
$$

Questions
Evaluate (all non-calculator):

1) $f(2)$ when $f(x)=2 x^{3}-x^{2}+4 x-5$.
2) $g(1)$ when $g(x)=13 x^{3}+8 x^{2}-5$.
3) $h(-1)$ when $h(x)=12 x^{3}-8 x^{2}-6 x+12$.
4) $p(-2)$ when $p(x)=-2 x^{3}+3 x^{2}-11 x+39$.
5) $k(-3)$ when $k(x)=-5 x^{3}-10 x+1$.
6) $w(-5)$ when $w(x)=-x^{3}-3 x^{2}-4 x-20$.
7) $j(-6)$ when $j(x)=-2 x^{3}+2 x^{2}-2 x$.

$$
\begin{aligned}
& \text { Answers } \\
& \text { 1) } f(2)=15 . \\
& \text { 2) } g(1)=16 . \\
& \text { 3) } h(-1)=-2 . \\
& \text { 4) } p(-2)=89 . \\
& \text { 5) } k(-3)=166 . \\
& \text { 6) } w(-5)=50 . \\
& \text { 7) } j(-6)=516 .
\end{aligned}
$$

