16 / 12 / 16

Circles - Lesson 1

Equations of Circles

LI

- Know the equation of a circle in its different forms.

SC

- Given the equation of a circle, determine the centre and radius.
- Determine the equation of a circle, given centre and radius.

A circle is the set of points that are the same distance from a fixed point; the fixed point is called the centre of the circle

Consider a circle with centre (a, b), radius of length r and a general point (x, y) on the circle:

Using Pythagoras' Theorem for the triangle made by drawing a vertical line from (x, y) and a horizontal line from (a, b), we have:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(Equation of circle with centre (a, b), radius r)

A common situation is when the centre of the circle is at the origin; the equation then becomes:

$$
x^{2}+y^{2}=r^{2}
$$

(Equation of circle with centre $(0,0)$, radius r)

Note that the radius is always positive, i. e. $r>0$

Example 1

State the centre and radius of the circle given by :
(a) $(x-1)^{2}+(y-4)^{2}=49$.
(b) $(x+3)^{2}+y^{2}=121$.
(c) $x^{2}+y^{2}=13$.
(a) $(x-1)^{2}+(y-4)^{2}=49$.
$(x-a)^{2}+(y-b)^{2}=r^{2}$
$a=1, b=4, r^{2}=49$
\therefore centre: $(1,4), r=7$
(b) $(x+3)^{2}+y^{2}=121$.

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& a=-3, b=0, r^{2}=121
\end{aligned}
$$

\therefore centre: $(-3,0), r=11$
(c) $x^{2}+y^{2}=13$.

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& a=0, b=0, r^{2}=13
\end{aligned}
$$

\therefore centre: $(0,0), r=\sqrt{13}$

Example 2

Find the equation of the circle with :
(a) centre $(5,8)$, radius 2 .
(b) centre $(-7,0)$, radius 7 .
(c) centre $(0,0)$, radius $1 / 2$.
(a) centre $(5,8)$, radius 2 .

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& a=1, b=4, r=2 \\
\therefore & (x-5)^{2}+(y-8)^{2}=4
\end{aligned}
$$

(b) centre $(-7,0)$, radius 7 .

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& a=-7, b=0, r=7
\end{aligned}
$$

$$
\therefore(x+7)^{2}+y^{2}=49
$$

(c) centre $(0,0)$, radius $1 / 2$.

$$
\begin{aligned}
& (x-a)^{2}+(y-b)^{2}=r^{2} \\
& a=0, b=0, r=1 / 2
\end{aligned}
$$

\therefore centre: $(0,0), r=1 / 4$

Example 3

Find the equation of the circle that passes through $(6,3)$ and has centre $(3,1)$.

To find the equation of a circle, we need the centre and radius. The centre is given, but the radius needs to be found.

This is done using the Distance Formula :

$$
\begin{aligned}
& r=\sqrt{(x-a)^{2}+(y-b)^{2}} \\
& r=\sqrt{(6-3)^{2}+(3-1)^{2}} \\
& r=\sqrt{13}
\end{aligned}
$$

Hence, the equation of the circle is,

$$
(x-3)^{2}+(y-1)^{2}=13
$$

The General Equation of a Circle

Starting with the equation of a circle centre (a, b) and radius r,

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

and expanding the brackets and simplifying, gives,

$$
\begin{gathered}
x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}=r^{2} \\
x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}-r^{2}=0
\end{gathered}
$$

Relabelling $g=-a, f=-b$ and $c=a^{2}+b^{2}-r^{2}$, we obtain:

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

General equation of a circle

centre $(-g,-f)$, radius $r=\sqrt{g^{2}+f^{2}-c}$

Note that, as $r>0$, we must have:

$$
g^{2}+f^{2}-c>0
$$

Example 4

Determine whether or not the equation
$x^{2}+y^{2}-2 x+4 y+9=0$ represents a circle.

We just need to calculate the quantity
$g^{2}+f^{2}-c:$

$$
\begin{gathered}
x^{2}+y^{2}-2 x+4 y+9=0 \\
x^{2}+y^{2}+2 g x+2 f y+c=0 \\
2 g=-2 \Rightarrow g=-1 \\
2 f=4 \Rightarrow f=2 \\
c=9 \\
g^{2}+f^{2}-c=(-1)^{2}+2^{2}-9 \\
=1+4-9 \\
=
\end{gathered}
$$

As $g^{2}+f^{2}-c<0$, the equation $x^{2}+y^{2}-2 x+4 y+9=0$ does not represent a circle.

Example 5

Find the centre and radius of the circle
$x^{2}+y^{2}-4 x+2 y+1=0$.

$$
\begin{gathered}
x^{2}+y^{2}-4 x+2 y+1=0 \\
x^{2}+y^{2}+2 g x+2 f y+c=0 \\
2 g=-4 \Rightarrow g=-2 \\
2 f=2 \Rightarrow f=1 \\
c=1
\end{gathered}
$$

Centre: $(-g,-f)=(2,-1)$
Radius: $\sqrt{g^{2}+f^{2}-c}$

$$
\begin{aligned}
& =\sqrt{(-2)^{2}+1^{2}-1} \\
& =\underline{2}
\end{aligned}
$$

Centre: $(2,-1)$
Radius: 2

Example 6

The circle $x^{2}+y^{2}+4 x-2 y-84=0$ has diameter $A B$. If A is the point $(-10,-4)$, find the coordinates of B.

The points A and B are 'symmetrically equidistant' about the centre of the circle. So, find the centre and radius and just 'count coordinates' to get B.

$$
\begin{aligned}
& x^{2}+y^{2}+4 x-2 y-84=0 \\
& x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& 2 g=4 \Rightarrow g=2 \\
& 2 f=-2 \Rightarrow f=-1
\end{aligned}
$$

$$
\text { Centre : }(-g,-f)=(-2,1)
$$

Start at the centre $(-2,1)$. The x-coordinate of A is 8 units to the left of -2 . Therefore the x - coordinate of B is 8 units to the right of -2 , i.e. it is equal to $-2+8=6$. Similarly, as the y-coordinate of A is 5 units down from 1, the y-coordinate of B is 5 units up from 1, i.e. it is equal to $1+5=6$.

$$
B(6,6)
$$

Example 7

The point $(k, 1)$ lies on the circle
$x^{2}+y^{2}+6 x-3 y=14$. Find the possible values of k.

$$
\begin{aligned}
x^{2}+y^{2}+6 x-3 y & =14 \\
k^{2}+1^{2}+6 k-3(1) & =14 \\
k^{2}+6 k-2-14 & =0 \\
k^{2}+6 k-16 & =0 \\
(k+8)(k-2) & =0 \\
k=-8, k & =2
\end{aligned}
$$

CfE Higher Maths

- pg. 308-10 Ex.14A All Q - pg. 312-3 Ex. 14B All Q

