

The Chain Rule tells us how to differentiate a composition of functions

Lagrange Form

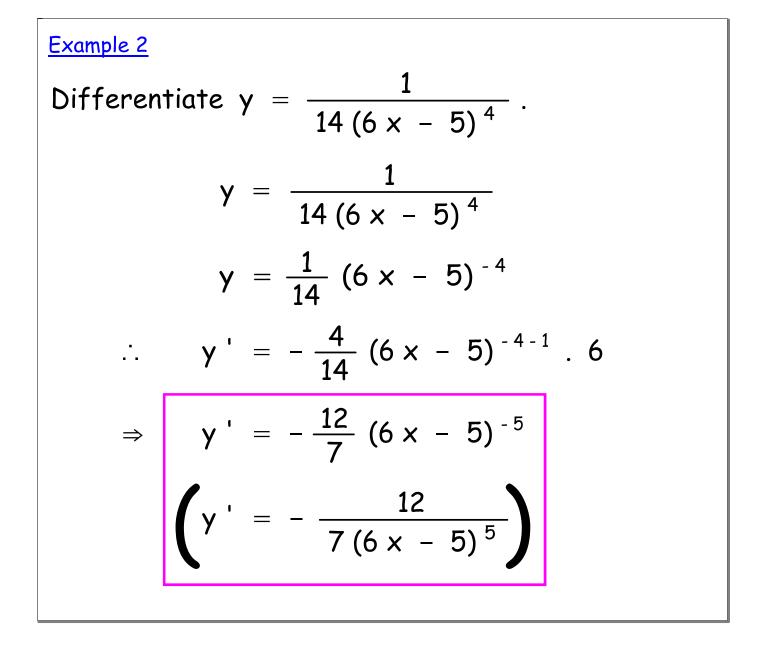
If
$$y = f(g(x))$$
, then,

(y dashed equals f dashed of g(x) multiplied by g dashed of x)

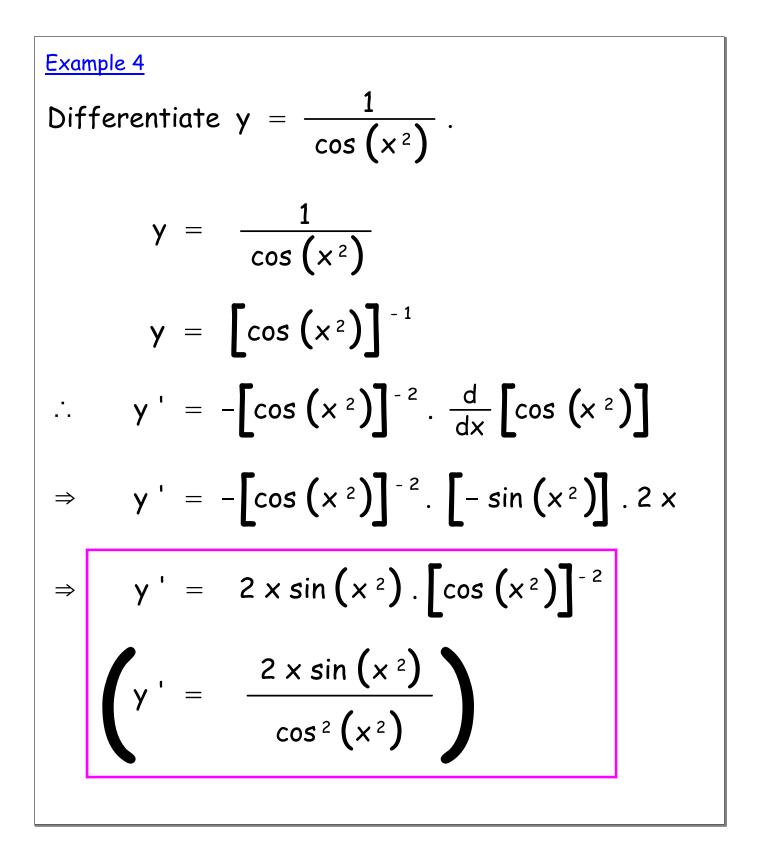
Leibniz Form

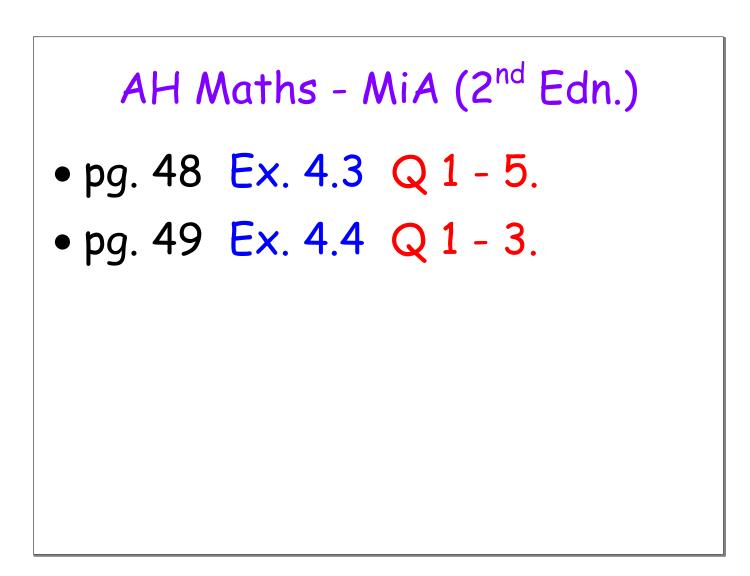
If y = f(g(x)), then letting u = g(x), we have that y = f(u) and u = g(x) (i. e., y is a function of u and u is a function of x); then, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

Example 1
Differentiate
$$y = (x^{3} - 6x + 2)^{9}$$
.
Lagrange Style
 $y = (x^{3} - 6x + 2)^{9}$
 $\therefore y' = 9(x^{3} - 6x + 2)^{8} \cdot (3x^{2} - 6)$
 $\Rightarrow y' = 9(3x^{2} - 6)(x^{3} - 6x + 2)^{8}$
 $(y' = 27(x^{2} - 2)(x^{3} - 6x + 2)^{8})$
Leibniz Style
Let $u = x^{3} - 6x + 2$. Then,
 $y = u^{9}$, $u = x^{3} - 6x + 2$
 $\therefore \frac{dy}{du} = 9u^{8}$, $\frac{du}{dx} = 3x^{2} - 6$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\therefore \frac{dy}{dx} = 9u^{8} \times (3x^{2} - 6)$
 $\Rightarrow \frac{dy}{dx} = 9(3x^{2} - 6)(x^{3} - 6x + 2)^{8}$



Example 3 Differentiate $y = \sin^5 2x$. $y = \sin^5 2x$ $y = (\sin 2x)^5$ $\therefore \quad y' = 5 (\sin 2x)^{5-1} \cdot \frac{d}{dx} (\sin 2x)$ $\Rightarrow \quad y' = 5 (\sin 2x)^4 \cdot 2 \cos 2x$ $\Rightarrow \quad y' = 10 \cos 2x \sin^4 2x$





Ex. 4.31Find the derivative of each of these expressions.
a
$$(3x + 4)^6$$
 b $3(2x - 5)^4$ c $(3x^2 + 2x - 1)^5$ d $\sin(x^3)$ 2Find $f'(x)$ given
a $f(x) = \cos 7x$ b $f(x) = (2x^3 + 4x^2 - 1)^4$ c $f(x) = \sin(2x^2 - 5x)$ 3Find $\frac{dy}{dx}$ given that
a $y = \frac{1}{3x + 1}$ b $y = \frac{1}{(3x + 1)^2}$ c $y = \frac{3}{(3x + 2)^3}$ d $y = \frac{1}{\sin x}$ 4Use the fact that $x^\circ = \frac{\pi}{180}x$ radians to help you differentiate these expressions.
a $\sin x^\circ$ b $\cos x^\circ$ c $\sin(2x + 30)^\circ$ 5Differentiate these expressions.
a $\sin(\cos x)$ b $\cos(\cos x)$ c $\sin(\sin x)$ d $\cos(\sin x)$ **Ex. 4.4**1Find $\frac{dy}{dx}$ for each of these.
a $y = \sin^2 3x$ b $y = \cos^2(\sin x)$ c $y = (x + \sin 3x)^2$ d $y = \cos(\sin^2 x)$ 2Differentiate
a $\cos^3(2x + 4)$ b $\frac{1}{\sin^2(3x + 1)}$ c $\cos\left(\frac{1}{x^2 + 2x + 1}\right)$ 3Find the derivative of
a $\frac{1}{\cos(x^2 + x)}$ b $\frac{1}{\sin(\cos x)}$ c $\frac{1}{\sqrt{\sin(3x + 2)}}$

Answers to AH Maths (MiA), pg. 48, Ex. 4.3 1 a $18(3x + 4)^5$ b $24(2x - 5)^3$ c $5(6x + 2)(3x^2 + 2x - 1)^4$ d $3x^2 \cos (x^3)$ e $3 \cos x \sin^2 x$ 2 a $-7 \sin 7x$ b $4(6x^2 + 8x)(2x^3 + 4x^2 - 1)^3$ c $(4x - 5) \cos (2x^2 - 5x)$ 3 a $-\frac{3}{(3x + 1)^2}$ b $-\frac{6}{(3x + 1)^3}$ c $-\frac{27}{(3x + 2)^4}$ d $-\frac{\cos x}{\sin^2 x}$ e $\frac{\sin x}{\cos^2 x}$ 4 a $\frac{\pi}{180} \cos x^\circ$ b $-\frac{\pi}{180} \sin x^\circ$ c $\frac{\pi}{90} \cos (2x + 30)^\circ$ 5 a $-\sin x \cos (\cos x)$ b $\sin x \sin (\cos x)$ c $\cos x \cos (\sin x)$ d $-\cos x \sin (\sin x)$

Answers to AH Maths (MiA), pg. 49, Ex. 4.4

1 a $6 \sin 3x \cos 3x$ b $-2 \cos (\sin x) \cdot \sin (\sin x) \cdot \cos x$ c $2(x + \sin 3x)(1 + 3 \cos 3x)$ d $-2 \sin (\sin^2 x) \sin x \cos x$ 2 a $-6 \cos^2 (2x + 4) \sin(2x + 4)$ b $-\frac{6 \cos (3x + 1)}{\sin^3 (3x + 1)}$ c $\sin \left(\frac{1}{x^2 + 2x + 1}\right) \frac{2x + 2}{(x^2 + 2x + 1)^2}$ 3 a $\frac{(2x + 1) \sin (x^2 + x)}{\cos^2 (x^2 + x)}$ b $\frac{\sin x \cos (\cos x)}{\sin^2 (\cos x)}$ c $-\frac{3 \cos (3x + 2)}{2 (\sin (3x + 2))^{\frac{3}{2}}}$