X100/301

NATIONAL QUALIFICATIONS 2006 FRIDAY, 19 MAY 9.00 AM - 10.10 AM MATHEMATICS HIGHER Units 1, 2 and 3 Paper 1

(Non-calculator)

Read Carefully

- 1 Calculators may NOT be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product: $a.b = |a| |b| \cos \theta$, where θ is the angle between a and b

or
$$\boldsymbol{a}.\boldsymbol{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae: $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

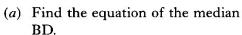
$$\cos 2A = \cos^2 A - \sin^2 A$$

$$=2\cos^2 A-1$$

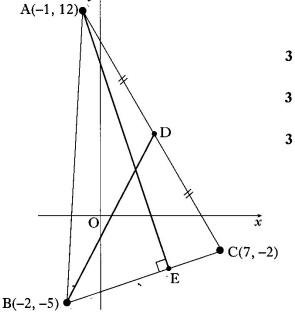
$$= 1 - 2\sin^2 A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
$\cos ax$	$-a\sin ax$

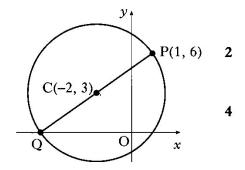

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$


ALL questions should be attempted.

Marks

1. Triangle ABC has vertices A(-1, 12), B(-2, -5) and C(7, -2).



- (b) Find the equation of the altitude AE.
- (c) Find the coordinates of the point of intersection of BD and AE.

2. A circle has centre C(-2, 3) and passes through P(1, 6).

- (a) Find the equation of the circle.
- (b) PQ is a diameter of the circle. Find the equation of the tangent to this circle at Q.

3. Two functions f and g are defined by f(x) = 2x + 3 and g(x) = 2x - 3, where x is a real number.

- (a) Find expressions for:
 - (i) f(g(x));

(ii) g(f(x)).

3

(b) Determine the least possible value of the product $f(g(x)) \times g(f(x))$.

2

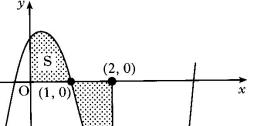
[Turn over

- **4.** A sequence is defined by the recurrence relation $u_{n+1} = 0.8u_n + 12$, $u_0 = 4$.
 - (a) State why this sequence has a limit.

1

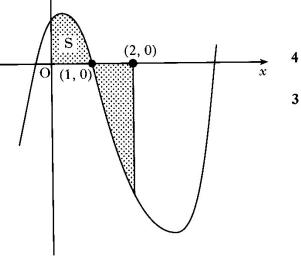
(b) Find this limit.

2


5. A function f is defined by $f(x) = (2x - 1)^5$.

Find the coordinates of the stationary point on the graph with equation y = f(x)and determine its nature.

7


6. The graph shown has equation $y = x^3 - 6x^2 + 4x + 1$.

The total shaded area is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Calculate the shaded area labelled S.

(b) Hence find the total shaded area.

7. Solve the equation $\sin x^{\circ} - \sin 2x^{\circ} = 0$ in the interval $0 \le x \le 360$.

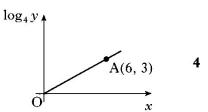
8. (a) Express $2x^2 + 4x - 3$ in the form $a(x + b)^2 + c$.

3

(b) Write down the coordinates of the turning point on the parabola with equation $y = 2x^2 + 4x - 3$.

1

Marks


5

3

9. \boldsymbol{u} and \boldsymbol{v} are vectors given by $\boldsymbol{u} = \begin{pmatrix} k^3 \\ 1 \\ k+2 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 1 \\ 3k^2 \\ -1 \end{pmatrix}$, where k > 0.

- (a) If $u \cdot v = 1$, show that $k^3 + 3k^2 k 3 = 0$.
- (b) Show that (k + 3) is a factor of $k^3 + 3k^2 k 3$ and hence factorise $k^3 + 3k^2 k 3$ fully.
- (c) Deduce the only possible value of k.
- (d) The angle between u and v is θ . Find the exact value of $\cos \theta$.
- 10. Two variables, x and y, are connected by the law $y = a^x$. The graph of $\log_4 y$ against x is a straight line passing through the origin and the point A(6, 3). Find the value of a.

[END OF QUESTION PAPER]

X100/303

NATIONAL QUALIFICATIONS 2006 FRIDAY, 19 MAY 10.30 AM - 12.00 NOON

MATHEMATICS HIGHER Units 1, 2 and 3 Paper 2

Read Carefully

- 1 Calculators may be used in this paper.
- 2 Full credit will be given only where the solution contains appropriate working.
- 3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x - a)^2 + (y - b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:

 $a.b = |a||b|\cos\theta$, where θ is the angle between a and b

or
$$\mathbf{a}.\mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

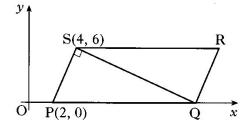
Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

$$f(x) \qquad \int f(x)dx$$

$$\sin ax \qquad -\frac{1}{a}\cos ax + C$$


$$\cos ax \qquad \frac{1}{a}\sin ax + C$$

ALL questions should be attempted.

Marks

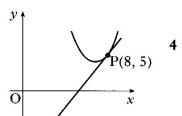
1. PQRS is a parallelogram. P is the point (2, 0), S is (4, 6) and Q lies on the x-axis, as shown.

The diagonal QS is perpendicular to the side PS.

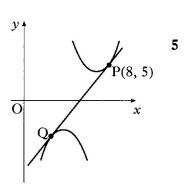
(a) Show that the equation of QS is x + 3y = 22.

4

(b) Hence find the coordinates of Q and R.


2

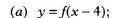
2. Find the value of k such that the equation $kx^2 + kx + 6 = 0$, $k \ne 0$, has equal roots.


2

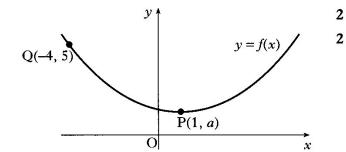
3. The parabola with equation $y = x^2 - 14x + 53$ has a tangent at the point P(8, 5).

(a) Find the equation of this tangent.

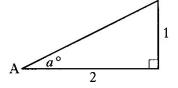
(b) Show that the tangent found in (a) is also a tangent to the parabola with equation $y = -x^2 + 10x - 27$ and find the coordinates of the point of contact Q.


4. The circles with equations $(x-3)^2 + (y-4)^2 = 25$ and $x^2 + y^2 - kx - 8y - 2k = 0$ have the same centre.

Determine the radius of the larger circle.


5

2


- 5. The curve y = f(x) is such that $\frac{dy}{dx} = 4x 6x^2$. The curve passes through the point (-1, 9). Express y in terms of x.
- **6.** P is the point (-1, 2, -1) and Q is (3, 2, -4).
 - (a) Write down \overrightarrow{PQ} in component form. 1
 - (b) Calculate the length of PQ 1
 - (c) Find the components of a unit vector which is parallel to PQ. 1
- 7. The diagram shows the graph of a function y = f(x). Copy the diagram and on it sketch the graphs of:

(b) y = 2 + f(x - 4).

- The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A.
 - (a) Find the exact values of:
 - (i) $\sin a^{\circ}$;
 - (ii) $\sin 2a^{\circ}$.
 - (b) By expressing $\sin 3a^{\circ}$ as $\sin (2a + a)^{\circ}$, find the exact value of $\sin 3a^{\circ}$.

3

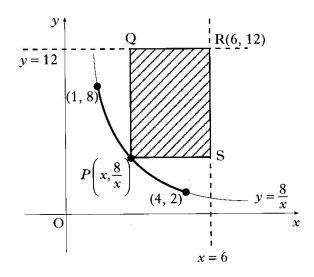
- **9.** If $y = \frac{1}{x^3} \cos 2x$, $x \neq 0$, find $\frac{dy}{dx}$.
- **10.** A curve has equation $y = 7\sin x 24\cos x$.
 - (a) Express $7\sin x 24\cos x$ in the form $k\sin(x-a)$ where k > 0 and $0 \le a \le \frac{\pi}{3}$. 4
 - (b) Hence find, in the interval $0 \le x \le \pi$, the x-coordinate of the point on the curve where the gradient is 1.

3

8

It is claimed that a wheel is made from wood which is over 1000 years old. 11.

To test this claim, carbon dating is used.


The formula $A(t) = A_0 e^{-0.000124t}$ is used to determine the age of the wood, where A_0 is the amount of carbon in any living tree, A(t) is the amount of carbon in the wood being dated and t is the age of the wood in years.

For the wheel it was found that A(t) was 88% of the amount of carbon in a living tree.

5 Is the claim true?

12. PORS is a rectangle formed according to the following conditions:

- it is bounded by the lines x = 6 and y = 12
- P lies on the curve with equation $y = \frac{8}{x}$ between (1, 8) and (4, 2)
- R is the point (6, 12).

- (a) (i) Express the lengths of PS and RS in terms of x, the x-coordinate of P.
 - (ii) Hence show that the area, A square units, of PQRS is given by

 $A = 80 - 12x - \frac{48}{x}$.

(b) Find the greatest and least possible values of A and the corresponding values of x for which they occur.

[END OF QUESTION PAPER]