Advanced Higher Applied Mathematics 2004 Solutions for Section E (Statistics 1)

E1.

(a) Stratified

1

		and Quota [or Quota (convenience)]	1
	(b)	Approach (a) should be best	1
		since (b) is not random (other forms e.g. Glasgow not typical	, biased) 1
E2.	(a)	F~ <i>Bin</i> (192, 0.002).	1 for distribution
			1 for parameters
	(b)	$P(F \geqslant 3) = 1 - P(F \leqslant 2)$	1
		= 1 - (0.6809 + 0.2620 + 0.0501)	1
		= 0.0070	1
		Notes: applying a Poisson distribution loses (at least) one modistribution loses two marks.	ırk; a Normal
	(c)	Approximate using the $Poi(0.384)$	1 for distribution 1 for parameters
E3.	Ass	ume that yields are normally distributed.	1
	Ass	ume that the standard deviation is unchanged.	1
	$\bar{x} =$	404.2.	
	A 9	5% confidence interval for the mean yield, μ , is given by:–	
	_ x ±	$1.96 \frac{\sigma}{=}$	1
		\sqrt{n} 10	
	404	$1.96 \frac{\sigma}{\sqrt{n}}$ $.2 \pm 1.96 \frac{10}{\sqrt{5}}$	
		$.2 \pm 8.8$	1
		395.4, 413.0).	
		fact that the confidence interval does not include 382	1
		vides evidence, at the 5% level of significance, of a	1
	-	nge in the mean yield.	
E4.	TNI	E = 3% of 500 = 15	1
	Wit	h maximum allowable standard deviation	
	P(w	yeight < 485) = 0.025	1
	\rightarrow	$\frac{485 - 505}{1} = -1.96$	1,1
	7	σ 20	-,-
	\Rightarrow	$\frac{485 - 505}{\sigma} = -1.96$ $\sigma = \frac{20}{1.96} = 10.2$	1
	The	re will be a small probability of obtaining a content	
	weig	ght less than 470g with the normal model.	1

E5. (a)
$$P(Alaskan fish classified as Canadian)$$

$$= P(X > 120 | X \sim N(100,20^2)$$

$$= P(Z > \frac{120 - 100}{20})$$

$$= P(Z > 1)$$

$$= 0.1587$$
1
(b) The probability is the same as in (a) because of symmetry.
1
(c) $P(Canadian origin | Alaskan predicted)$

$$= \frac{P(Alaskan predicted and Canadian origin)}{P(Alaskan predicted)}$$
1
$$= \frac{P(Alaskan predicted but Canadian origin)}{P(Ala pred and Alaskan) + P(Ala pred but Canadian)}$$
1
$$= \frac{0.4 \times 0.1587}{0.6 \times 0.8413 + 0.4 \times 0.1587}$$
1,1
$$= \frac{0.06348}{0.50478 + 0.06348}$$

$$= 0.112.$$

Note: Alternative methods acceptable e.g. Venn or Tree Diagrams