

2004 Applied Mathematics Advanced Higher – Section A Finalised Marking Instructions

Advanced Higher Applied Mathematics 2004 Solutions for Section A (Statistics 1 and 2)

A1.	(a)	Stratified	1
		and Quota [or Quota (convenience)]	1
	(b)	Approach (a) should be best	1
		since (b) is not random (other forms e.g. Glasgow not typical,	biased) 1
A2.	(a)	F~ <i>Bin</i> (192, 0.002).	1 for distribution
			1 for parameters
	(b)	$P(F \geqslant 3) = 1 - P(F \leqslant 2)$	1
		= 1 - (0.6809 + 0.2620 + 0.0501)	1
		= 0.0070	1
		Notes: applying a Poisson distribution loses (at least) one madistribution loses two marks.	rk; a Normal
	(c)	Approximate using the <i>Poi</i> (0.384)	1 for distribution 1 for parameters
A3.	Ass	ume that yields are normally distributed .	1
		ndom or independent will not do.]	
		404.2; s = 10.03	1
	t =	2.776	1
	A 9.	5% confidence interval for the mean yield, μ , is given by:-	
	- x +	$t = \frac{S}{s}$	1
	1.0	\sqrt{n}	
	404	$t \frac{s}{\sqrt{n}} \\ .2 \pm 2.776 \frac{10.03}{\sqrt{5}}$	
		.2 ± 12.45	1
		391.75, 416.65).	•
		fact that the confidence interval does not include 382	
		vides evidence, at the 5% level of significance, of a	1
	-	nge in the mean yield. (Stating it is changed loses one mark.)	
		e: the third and fourth marks are lost if a z interval is used.	
A4.	TNI	E = 3% of 500 = 15	1
	Wit	h maximum allowable standard deviation	
	P(w	yeight < 485) = 0.025	1
	\rightarrow	$\frac{485 - 505}{1} = -1.96$	1,1
		σ 20	-,-
	\Rightarrow	$\frac{485 - 505}{\sigma} = -1.96$ $\sigma = \frac{20}{1.96} = 10.2$	1
	The	re will be a small probability of obtaining a content	
	wei	ght less than 470g with the normal model.	1

A5. Assume that the distributions of times Before and After have the same shape.

Notes: a Normal distribution with the same shape is a valid comment.

Independent, random, Normal (without shape) are not valid.

Null hypothesis H_0 : Median After = Median Before

Alternative hypothesis H_1 : Median After < Median Before

Time	19	29	31	35	37	39	39	41	42	43	45	52	59	64
Period	A	A	В	A	A	В	A	A	В	В	A	В	В	В
Rank	1	2	3	4	5	6.5	6.5	8	9	10	11	12	13	14

1

1

1

1

1

1

1

1

1

1

1

Rank sum for After times =
$$37.5$$

$$W - \frac{1}{2}n(n+1) = 37.5 - 28 = 9.5$$

$$P(W - \frac{1}{2}n(n+1) < 10)$$

$$=\frac{125}{3432}$$

$$= 0.036$$

Since this value is less than 0.05 the null hypothesis

would be rejected in favour of the alternative,

indicating evidence of improved performance.

Notes:

As the computed value, 9.5, is not in the tables, a range of values for the probability was acceptable.

A Normal approximation was accepted.

A6.

Cream A B C
Obs. No. of purchasers 66 99 75
Exp. No. of purchasers 80 80 80

$$X^2 = \sum \frac{(O - E)^2}{F}$$

$$= \frac{(66 - 80)^2}{80} + \frac{(99 - 80)^2}{80} + \frac{(75 - 80)^2}{80}$$

$$= 2.45 + 4.5125 + 0.3125 = 7.275$$

with 2 d.f.

The critical value of chi-squared at the 5% level is 5.991

so the null hypothesis would be rejected.

i.e. there is *evidence* of a preference.

The fact that the p-value is less than 0.05 confirms

rejection of the null hypothesis at the 5%level of significance.

Note: using a two-tail test loses a mark.

A7. (a) The fitted value is 13.791 with residual 10.209.

1 1

(b) The wedge-shaped plot casts doubt on the assumption of constant variance of Y_i . (i.e. variance not constant)

1

1

(c) Satisfactory now since *variance* seems to be *more constant*.

Note: A phrase such as 'more randomly scattered' is acceptable.

(d) The residuals are normally distributed.

1

A8. (a)

Pre	36	45	30	63	48	52	44	44	45	51	39	44
Post	39	42	33	70	53	51	48	51	51	51	42	50
Post – Pre	3	-3	3	7	5	-1	4	7	6	0	3	6
Sign	1	-1	1	1	1	-1	1	1	1	0	1	1

Assume that differences are independent.

1

 H_0 : Median (Post – Pre) = 0 [or $\eta_d = 0$]

1

 H_1 : Median (Post – Pre) > 0 [or $\eta_d > 0$]

1

Under H_0 the differences Bin (11,0.5) with b = 2. $P(B \le 2) = (C_0^{11} + C_1^{11} + C_2^{11})0.5^{11}$

 $= (1 + 11 + 55)0.5^{11} = 0.0327.$

1

Since 0.0327 < 0.05 the null hypothesis is rejected and there is *evidence* that the median PCS-12 score has gone up.

1

Note: applying a two-tailed test loses a mark.

(b)
$$H_0$$
: $\mu_{Post} = 50$

 $H_1: \mu_{\text{Post}} \neq 50$

1

 $\bar{x} = 48.42$

 $z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} = \frac{48.42 - 50}{10 / \sqrt{12}} = -0.55.$

1,1

The critical region is |z| > 1.96 at the 5% level of significance.

Since -0.55 is not in the critical region, the null hypothesis is accepted indicating that the Post-operation scores are consistent

with a population mean of 50.

1

1

Note: a correct use of probability comparisons gets full marks.

- A9. P (Alaskan fish classified as Canadian) $= P(X > 120 \mid X \sim N(100,20^2)$ 1 $= P\left(Z > \frac{120 - 100}{20}\right)$ 1 = P(Z > 1)= 0.15871 The probability is the same as in (a) because of symmetry. 1 P (Canadian origin | Alaskan predicted) P (Alaskan predicted and Canadian origin) 1 P (Alaskan predicted) P (Alaskan predicted but Canadian origin) 1 P(Ala pred and Alaskan) + P(Ala pred but Canadian) 0.4×0.1587 1,1 $0.6 \times 0.8413 + 0.4 \times 0.1587$ 0.06348 0.50478 + 0.063481 = 0.112.Note: Alternative methods acceptable e.g. Venn or Tree Diagrams A10. The number, X, of inaccurate invoices in samples of n will have the Bin (n, p) distribution so 1 V(X) = npq= np(1 - p) $\Rightarrow V (Proportion) = V \left(\frac{1}{n}X\right) = \frac{1}{n^2} V(X)$ $= \frac{p(1-p)}{n}$
 - 1 1 $\Rightarrow \text{Standard deviation of Proportion} = \sqrt{\frac{p(1-p)}{n}}.$
 - (a) UCL = $p + 3\sqrt{\frac{p(1-p)}{n}}$ $= 0.12 + 3\sqrt{\frac{0.12 \times 0.88}{150}}$ = 0.12 + 0.08 = 0.201 LCL = 0.12 - 0.08 = 0.041
 - (b) The fact that the point for Week 30 falls below the lower chart limit provides evidence of a drop in the proportion of inaccurate invoices. 1 or: 8 consecutive points fell below the centre line.
 - (c) A new chart should be constructed (or set new limits) 1 using an estimate of p for calculation of limits which is based on data collected since the process change. 1