## AH 2003

## Section C (Mechanics 1 and 2)

ONLY candidates doing the course Mechanics 1 and 2 and one unit chosen from Mathematics 1 (Section D), Statistics 1 (Section E) and Numerical Analysis 1 (Section F) should attempt this Section.

Marks

3

2

1

3

## Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

Where appropriate, candidates should take the magnitude of the acceleration due to gravity as 9.8 m s<sup>-2</sup>.

- C1. A particle, initially at rest, is projected from the origin with acceleration  $(12-3t^2)\mathbf{i}$  m s<sup>-2</sup>, where  $\mathbf{i}$  is the unit vector in the direction of motion, and t is the time measured in seconds from the start of the motion.
  - (a) Determine the position of the particle when it next comes to rest.
  - (b) Find the velocity of the particle when it returns to the origin.
- C2. Motorcyclist A has uniform acceleration -2j ms<sup>-2</sup>, initial velocity i ms<sup>-1</sup> and initial position -i metres relative to a rectangular coordinate system with unit vectors i, j in the x, y directions respectively.
  - (a) Find the position  $\mathbf{r}_A(t)$  of the motorcyclist A at time t seconds, where t is measured from the start of the motion.

The position of a second motorcyclist B relative to the same coordinate system as A is

$$\mathbf{r}_B(t) = (2t-3)\mathbf{i} + (1-t^2)\mathbf{j}.$$

- (b) (i) Find the position of A relative to B.
  - (ii) Calculate the minimum distance between the motorcyclists.

two light inextensible chains AB and BC, attached to the block at B, as shown

On a construction site, a 1000 kg concrete block is supported in equilibrium by



PA and CQ are vertical with  $\angle PAB = 45^{\circ}$  and  $\angle BCQ = 60^{\circ}$ . The tensions in the chains over sections AB and BC are denoted by  $T_1$  and  $T_2$  respectively.

- (a) By resolving the forces horizontally, find a relationship between  $T_1$  and  $T_2$ .
- (b) Calculate the tension  $T_2$ .

2

below.

0

0





Starting from rest, Jill slides down the chute from A to C. Over both sections of the chute a frictional force acts on Jill where the coefficient of friction between her and the chute is  $\frac{1}{2}$ .

- (a) Find the speed of Jill at the point B.
- (b) Assuming that there is no change of speed as Jill moves from the sloping part of the slide to its horizontal part, show that her speed at C is given by

$$\sqrt{\frac{gL(\sqrt{2}-1)}{2}} \text{ m s}^{-1},$$

where  $g \, \text{m s}^{-2}$  is the magnitude of the acceleration due to gravity.

C5. An experiment is performed to test a new design of golf club. The club head exerts a constant force of magnitude F newtons for T seconds on an initially stationary golf ball of mass  $m \log T$ . The golf ball moves off in a horizontal direction as shown. The time t seconds is measured from the moment that the club head comes in contact with the golf ball.



(a) When  $0 \le t < T$ , find an expression for the speed of the golf ball in terms of F, m and t.

Write down an expression for the speed of the golf ball for  $t \geq T$ .

(b) Find, in terms of F, m and T, the total work done by the club on the golf ball.

[X106/701]

Page twelve

11 2 1 1 10 10 10 10 10 3 . of

3

2

3

An ice puck of mass mkg is projected across a horizontal ice rink with initial velocity 21ms, where i is the unit vector in the direction of motion. resistive force of -0.05 mei newtons acts on the puck, where tims is the velocity of the puck at time t seconds from the start of the motion. Write down a differential equation for v, and hence find v in terms of t. Calculate the time taken for the velocity of the puck to reduce to half of its initial value. A missile is launched from ground level with speed Vms<sup>-1</sup> at an angle of 30° to the horizontal. (a) Show that the height y metres of the missile at time t is given by  $y = \frac{1}{2}t \left(V - gt\right),$ where  $g \, \text{m} \, \text{s}^{-2}$  is the magnitude of the acceleration due to gravity, and t is 3 measured in seconds from the moment of launch. Find the maximum height H attained by the missile, giving your answer in 2 terms of V and g. (c) A missile is detected on radar if  $y \ge \frac{1}{4}H$ . Show that the missile appears 5 on radar for  $\frac{\sqrt{3}V}{2g}$  seconds. A block of mass  $m \log$  is at rest on a smooth horizontal surface, as shown below. A spring with stiffness constant k is attached to the block and to a rigid wall. Fixed wall The block is displaced to the right by a small distance a metres from the equilibrium position and then released. Show that the displacement, x metres,  $(\mid x \mid \leq a)$ , of the block from the equilibrium position at time t seconds after it is released satisfies the differential equation  $\frac{d^2x}{dt^2} = -\omega^2x.$ 1 Express  $\omega^2$  in terms of k and mHence show that  $v^2 = \omega^2 (a^2 - x^2)$ 3 where v m s<sup>-1</sup> is the speed of the block at time t seconds. Calculate the positions of the block where the kinetic energy of the block 3 equals the potential energy stored in the spring. Find the time taken for the block to travel once between these two positions, expressing your answer in terms of  $\omega$ . 3 [X106/701] Page thirteen [Turn over 0

A fairground ride consists of a "car" which is rotated at angular speed  $\omega$  radians per second about a vertical pole, as shown below. The rotating mechanism consists of a horizontal arm AB of length  $L_0$  metres and a light chain BC of length  $L_1$  metres to which the car is attached at C. The chain makes an angle  $\theta$  to the vertical when the angular speed is  $\omega$ . Assume that the chain remains taut throughout the motion during which A, B and C always lie in the vertical plane through the vertical pole.



(a) Show that the angular speed  $\omega$  is related to  $L_0$ ,  $L_1$  and  $\theta$  by the equation

$$\omega^2 = \frac{g \tan \theta}{L_0 + L_1 \sin \theta},$$

where gms<sup>-2</sup> is the magnitude of the acceleration due to gravity.

(b) The operator of the ride wishes to compare the angular speeds required when  $\theta = 30^{\circ}$  with  $\theta = 60^{\circ}$  when  $L_1 = 2L_0$ . Denoting the angular speeds at 30° and 60° by  $\omega_1$  and  $\omega_2$ , respectively, show that

$$\omega_2^2 = \frac{6}{1+\sqrt{3}}\omega_1^2.$$

5

5

## [END OF SECTION C]

All candidates who have attempted Section C (Mechanics 1 and 2) should now attempt ONE of the following

Section D (Mathematics 1) on Page fifteen
Section E (Statistics 1) on Pages sixteen and seventeen
Section F (Numerical Analysis 1) on Pages eighteen and nineteen.