Answer all the questions.

Answer these questions in a separate answer book, showing clearly the section chosen.

Where appropriate, candidates should take the magnitude of the acceleration due to gravity as 9.8 m s⁻².

G1. A motorcyclist moves from rest along a straight, horizontal road, with acceleration $2t\mathbf{i}$ m s⁻², where \mathbf{i} is the unit vector in the direction of motion, and t is the time in seconds from the start of the motion.

Calculate the distance travelled by the motorcyclist in the time taken for the speed to increase from 1 m s⁻¹ to 9 m s⁻¹.

G2. A car of mass m kilograms is travelling in a straight line along a horizontal road at constant speed U metres per second when the driver applies the brakes. The brakes cause a constant retarding force R newtons which brings the car to rest in a distance of D metres.

Find an expression for the stopping distance D in terms of m, U and R.

Comment on how the stopping distance depends on the mass of the car.

G3. The diagram below shows a car of mass m kilograms which is held in equilibrium on the back of a stationary lorry by means of a light inextensible chain AB which runs parallel to the sloping surface. This surface is inclined at an angle of θ to the horizontal and the coefficient of friction between the car and the surface is μ .

When θ = 30° the tension required in the chain AB to prevent the car slipping down the slope is T newtons. When θ is increased to 45° the tension required in AB becomes 2T newtons.

(a) When $\theta = 30^{\circ}$ show that

$$T = \frac{1}{2} \left(1 - \sqrt{3} \mu \right) mg,$$

where $g \text{ m s}^{-2}$ is the magnitude of the acceleration due to gravity.

- 3
- (b) Find an expression for T in terms of m, μ , and g when $\theta = 45^{\circ}$.

2

(c) Find the value of μ .

2

[Turn over for Questions G4 and G5 on Page twenty

A light aircraft is travelling due north at a constant altitude of 1km with G4. constant speed $100\sqrt{2}$ km/h. At 1 pm a helicopter is $50\sqrt{2}$ km due west of the aircraft, and travelling in a north easterly direction at a constant altitude of 2 km with constant speed 100 km/h.

Taking the position of the aircraft at 1 pm as the origin, and defining an appropriate set of unit vectors, find the position of the helicopter relative to the aircraft in terms of time t hours after 1 pm.

6

An artillery shell is launched from the point A, which is H metres vertically G5. above the point O on level ground, as shown below. The shell is projected at an angle α above the horizontal, where $0 < \alpha < \frac{\pi}{2}$, with speed $\sqrt{2gH}$ metres per second, where gm s⁻² is the magnitude of the acceleration due to gravity.

(a) Show that, referred to the axes shown, the equation of the trajectory of the $y = H + x \tan \alpha - \frac{(1 + \tan^2 \alpha)}{4H} x^2.$ shell is

[Note that $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$.]

The shell lands at the point B on the ground, a horizontal distance of 2Hmetres from O, as shown.

Show that $\tan \alpha = 2$.

3

Show further that the maximum height above the ground attained by the shell is $\frac{9}{5}H$ metres.

[END OF SECTION G]

[END OF QUESTION PAPER]